This study addresses the nonlinear dynamic behavior of O-ring seals as the retaining spring in squeeze film dampers (SFDs). An analytical model is developed to predict the restoring and hysteresis forces of elastomer O-rings based on experimental and numerical data. This model takes into account the temperature softening and excitation frequency hardening effects in O-rings as well as the installation conditions in the form of radial and vertical preloads, σ and γ, respectively. Long bearing assumption is adopted for the solution of Reynolds equation. The equations of motion of horizontal unbalanced rigid rotor are derived, and a dimensional analysis is conducted on them. The numerical results substantiates the synchronizing effects of bearing parameter, B and vertical preload, γ, and the asynchronizing effects of O-ring parameter, O and radial preload, σ. It is shown that the variation of temperature and rotational speed as operating conditions influence the rotor response significantly.

This content is only available via PDF.
You do not currently have access to this content.