In this work, we model the strain effects on the electrical transport properties of Si/Ge nanocomposite thin films. We utilize a two-band k·p theory to calculate the variation of the electronic band structure as a function of externally applied strains. By using the modified electronic band structure, electrical conductivity of the Si/Ge nanocomposites is calculated through a self-consistent electron transport analysis, where a nonequilibrium Green’s function (NEGF) is coupled with the Poisson equation. The results show that both the tensile uniaxial and biaxial strains increase the electrical conductivity of Si/Ge nanocomposite. The effects are more evident in the biaxial strain cases.

This content is only available via PDF.
You do not currently have access to this content.