Damage detection and Structural Health Monitoring (SHM) for bridges employing bridge-vehicle interaction has created considerable interest in recent times. In this regard, a significant amount of work is present on the bridge-vehicle interaction models and on damage models. Surface roughness on bridges is typically used for detailing models and analyses are present relating surface roughness to the dynamic amplification of response of the bridge, the vehicle or to the ride quality. This paper presents the potential of using surface roughness for damage detection of bridge structures through bridge-vehicle interaction. The concept is introduced by considering a single point observation of the interaction of an Euler-Bernoulli beam with a breathing crack traversed by a point load. The breathing crack is treated as a nonlinear system with bilinear stiffness characteristics related to the opening and closing of crack. A uniform degradation of flexural rigidity of an Euler-Bernoulli beam traversed by a point load is also considered in this regard. The surface roughness of the beam is essentially a spatial representation of some spectral definition and is treated as a broadband white noise in this paper. The mean removed residuals of beam response are analyzed to estimate damage extent. Uniform velocity and acceleration conditions of the traversing load are investigated for the appropriateness of use. The detection and calibration of damage is investigated through cumulant based statistical parameters computed on stochastic, normalized responses of the damaged beam due to passages of the load. Possibilities of damage detection and calibration under benchmarked and non-benchmarked cases are discussed. Practicalities behind implementing this concept are also considered.

This content is only available via PDF.
You do not currently have access to this content.