In the early stages of the design process, there is a need to provide designers with tools to assess risks and possible failures so as to avoid costly redesigns, comply with established safety measures and to promote innovation throughout the design process. Recently, various methods have been proposed in research to accomplish such tasks, including the Risk in Early Design (RED) and the Function Failure Design Method (FFDM). This paper proposes a method for examining the utility of such failure-based computational design methods. Validation is accomplished by analyzing products with a known history of failure, decomposing these products into functional representations and performing both RED and FFDM analyses on these models to see how closely such methods are able to correctly identify the real-world failures. The goal of this work is to determine the effectiveness of both the RED and FFDM methods in order to suggest improvements for both methods. The results provide insight on the verification methodology in addition providing to prescriptive methods to increase the usefulness of early stage failure and risk assessment techniques.

This content is only available via PDF.
You do not currently have access to this content.