This work describes the development and analysis of nonlinear adaptive based control algorithms for composite structures/systems operated with Shape Memory Alloy (SMA) actuators. A mathematical model charactering the motion of the composite systems is established, and by using Lyapunov stability theory, algorithms for linear displacement tracking control are derived. Actuation and control is achieved by adjusting the supply current to the SMA actuators. It is shown that with the proposed strategy for both linear displacement and velocity requires that the desired trajectory is tracked precisely. The novelty of the proposed approach also lies in the fact that it is fairly easy to set up and the computation involved as compared with other strategies. An example is used to verify the validity of the proposed approach. Simulation results using Matlab are presented.

This content is only available via PDF.
You do not currently have access to this content.