The aim of the present paper is to compare two different methods available to reduce the complicated dynamics exhibited by large amplitude, geometrically nonlinear vibrations of a thin shell. The two methods are: the proper orthogonal decomposition (POD) and an asymptotic approximation of the Nonlinear Normal Modes (NNMs) of the system. The structure used to perform comparisons is a water-filled, simply supported circular cylindrical shell subjected to harmonic excitation in the spectral neighbourhood of the fundamental natural frequency. A reference solution is obtained by discretizing the Partial Differential Equations (PDEs) of motion with a Galerkin expansion containing 16 eigenmodes. The POD model is built by using responses computed with the Galerkin model; the NNM model is built by using the discretized equations of motion obtained with the Galerkin method, and taking into account also the transformation of damping terms. Both the POD and NNMs allow to reduce significantly the dimension of the original Galerkin model. The computed nonlinear responses are compared in order to verify the accuracy and the limits of these two methods. For vibration amplitudes equal to 1.5 times the shell thickness, the two methods give very close results to the original Galerkin model. By increasing the excitation and vibration amplitude, significant differences are observed and discussed.

1.
Amabili
M.
,
2003
.
Theory and experiments for large-amplitude vibrations of empty and fluid-filled circular cylindrical shells with imperfections
.
Journal of Sound and Vibration
262
,
921
975
.
2.
Amabili
M.
,
Pai¨doussis
M. P.
,
2003
.
Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid-structure interaction
.
Applied Mechanics Reviews
56
(
4)
,
349
381
.
3.
Amabili
M.
,
Sarkar
A.
,
Pai¨doussis
M. P.
,
2003
.
Reduced-order models for nonlinear vibrations of cylindrical shells via the proper orthogonal decomposition method
.
Journal of Fluids and Structures
18
,
227
250
.
4.
Amabili
M.
,
Sarkar
A.
,
Pai¨doussis
M. P.
,
2006
.
Chaotic vibrations of circular cylindrical shells: Galerkin versus reduced-order models via the proper orthogonal decomposition method
.
Journal of Sound and Vibration
290
,
736
762
.
5.
Aubry
N.
,
Holmes
P.
,
Lumley
J. Lp.
,
Stone
E.
,
1988
.
The dynamics of coherent structures in the wall region of a turbulent boundary layer
.
Journal of Fluid Mechanics
192
,
115
173
.
6.
Azeez
M. F.
,
Vakakis
A. F.
,
2001
.
Proper orthogonal decomposition (POD) of a class of vibroimpact oscillations
.
Journal of Sound and Vibration
240
,
859
889
.
7.
Bellizzi
S.
,
Bouc
R.
,
2005
.
A new formulation for the existence and calculation of nonlinear normal modes
.
Journal of Sound and Vibration
287
,
545
569
.
8.
Breuer
K. S.
,
Sirovich
L.
,
1991
.
The use of the Karhunen-Loe`ve procedure for the calculation of linear eigenfunctions
.
Journal of Computational Physics
96
,
277
296
.
9.
Carr, J., 1981. Applications of centre manifold theory. Springer-Verlag, New-York.
10.
Doedel, E. J., Champneys, A. R., Fairgrieve, T. F., Kuznetsov, Y. A., Sandstede, B., Wang, X., 1998. AUTO 97: Continuation and Bifurcation Software for Ordinary Differential Equations (with HomCont). Concordia University, Montreal, Canada.
11.
Elphick
C.
,
Tirapegui
E.
,
Brachet
M.
,
Coullet
P.
,
looss
G.
,
1987
.
A simple global characterization for normal forms of singular vector fields
.
Physica D
29
,
95
127
.
12.
Guckenheimer, J., Holmes, P., 1983. Non-linear oscillations, dynamical systems and bifurcations of vector field. Springer, New-York
13.
looss, G., Adelmeyer, M., 1998. Topics in bifurcation theory. World Scientific, New-York, second edition.
14.
Je´ze´quel
L.
,
Lamarque
C. H.
,
1991
.
Analysis of non-linear dynamical systems by the normal form theory
.
Journal of Sound and Vibration
149
,
429
459
.
15.
Jiang
D.
,
Pierre
C.
,
Shaw
S.
,
2005
a.
The construction of non-linear normal modes for systems with internal resonance
.
International Journal of Nonlinear Mechanics
40
,
729
746
.
16.
Jiang
D.
,
Pierre
C.
,
Shaw
S.
,
2005
b.
Nonlinear normal modes for vibratory systems under harmonic excitation
.
Journal of Sound and Vibration
288
,
791
812
.
17.
Kerschen
G.
,
Feeny
B. F.
,
Golinval
J.-C.
,
2003
.
On the exploitation of chaos to build reduced-order models
.
Computer Methods in Applied Mechanics and Engineering
192
,
1785
1795
.
18.
Kerschen
G.
,
Golinval
J.-C.
,
Vakakis
A. F.
,
Bergman
L. A.
,
2005
.
The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview
.
Nonlinear Dynamics
41
,
147
169
.
19.
King
M. E.
,
Vakakis
A. F.
,
1994
.
Energy-based formulation for computing nonlinear normal modes in undamped continuous systems
.
Journal of Vibration and Acoustics
116
,
332
340
.
20.
Lacarbonara
W.
,
Rega
G.
,
Nayfeh
A. H.
,
2003
.
Resonant non-linear normal-modes. Part 1: analytical treatment for structural one-dimensional systems
.
International Journal of Nonlinear Mechanics
38
,
851
872
.
21.
Mikhlin
Yu. V.
,
1995
.
Matching of local expansions in the theory of non-linear vibrations
.
Journal of Sound and Vibration
182
,
577
588
.
22.
Pellicano
F.
,
Amabili
M.
,
Pai¨doussis
M. P.
,
2002
.
Effect of the geometry on the non-linear vibration of circular cylindrical shells
.
International Journal of Non-Linear Mechanics
37
,
1181
1198
.
23.
Pesheck
E.
,
Pierre
C.
,
Shaw
S.
,
2002
.
A new Galerkin-based approach for accurate non-linear normal modes through invariant manifolds
.
Journal of Sound and Vibration
249
,
971
993
.
24.
Poincare´, H., 1892. Les me´thodes nouvelles de la me´canique ce´leste. Gauthiers-Villars, Paris.
25.
Rosenberg
R. M.
,
1966
.
On non-linear vibrations of systems with many degrees of freedom
.
Advances in Applied Mechanics
9
,
155
242
.
26.
Sarkar
A.
,
Pai¨doussis
M. P.
,
2003
.
A compact limit-cycle oscillation model of a cantilever conveying fluid
.
Journal of Fluids and Structures
17
,
525
539
.
27.
Sarkar
A.
,
Pai¨doussis
M. P.
,
2004
.
A cantilever conveying fluid: coherent modes versus beam modes
.
International Journal of Non-Linear Mechanics
39
,
467
481
.
28.
Shaw
S.
,
Pierre
C.
,
1991
.
Non-linear normal modes and invariant manifolds
.
Journal of Sound and Vibration
150
,
170
173
.
29.
Shaw
S. W.
,
Pierre
C.
,
1993
.
Normal modes for non-linear vibratory systems
.
Journal of Sound and Vibration
164
,
85
124
.
30.
Sirovich
L.
,
1987
.
Turbulence and dynamics of coherent structures, Part I: coherent structures
.
Quarterly of Applied Mathematics
45
,
561
571
.
31.
Slater
J. C.
,
1996
.
A numerical method for determining nonlinear normal modes
.
Nonlinear Dynamics
10
,
19
30
.
32.
Touze´, C., Amabili, M., 2005. Non-linear normal modes for damped geometrically non-linear systems: application to reduced-order modeling of harmonically forced structures. Journal of Sound and Vibration (submitted).
33.
Touze`, C., Thomas, O., 2006. Non-linear behaviour of free-edge shallow spherical shells: Effect of the geometry. International Journal of Nonlinear Mechanics (accepted).
34.
Touze´
C.
,
Thomas
O.
,
Chaigne
A.
,
2004
.
Hardening/softening behaviour in nonlinear oscillations of structural systems using non-linear normal modes
.
Journal of Sound and Vibration
273
,
77
101
.
35.
Vakakis, A. F., Manevich, L. I., Mikhlin, Yu. V., Philipchuck, V. N., Zevin, A. A., 1996. Normal modes and localization in non-linear systems. Wiley, New-York.
36.
Wolfram, S., 1999. The Mathematica Book, 4th edition. Cambridge University Press, Cambridge, UK.
37.
Zahorian
S. A.
,
Rothenberg
M.
,
1981
Principal component analysis for low-redundancy encoding of speech spectra
.
Journal of the Acoustical Society of America
69
,
519
524
.
This content is only available via PDF.
You do not currently have access to this content.