Performances of point contact EHL on multilayered or coated substrates have been analyzed in this paper via computer simulations, with emphasis on comparing the effects of Newtonian and non-Newtonian lubricants. The lubrication system consists of a rigid ball in contact with a smooth coated flat. The coating is perfectly bonded to an elastic substrate and it has a uniform thickness. The rigid ball has surface velocity U relative to the contact point. The hydrodynamic pressure p is governed by a generalized Reynolds equation in which the non-Newtonian effects of lubricants are characterized by two factors whose values are determined based on lubricant rheology. The Papkovich-Neuber potentials were employed to get the response functions in frequency domain for layered contact problems, and the influence coefficients relating pressure to surface displacements and stresses can be obtained via invert Fourier transform. The surface deformation was then calculated in terms of the pressure-displacement influence coefficients and the DC-FFT method was used to speed up the computation. The distributions of pressure, film thickness and subsurface stress have been analyzed for lubricants with different rheological behaviors, from which pressure and film thickness profiles along the rolling direction are calculated for Newtonian and Non-Newtonian lubricants. The central film thickness become thicker for stiffer coatings in the case of Newtonian lubricants, but the trend is reversed for Non-Newtonian lubricants. The surface stresses along the rolling direction show a spike corresponding to the pressure, which is more significant with stiffer coatings in the Newtonian case, but the spike is less visible for Non-Newtonian lubricants.

This content is only available via PDF.
You do not currently have access to this content.