Abstract
In this study, a label-free detection approach for effective detection of the odontoglossum ringspot virus (ORSV) infected orchids has been developed. We used semiconductor fabrication process to fabricate 1,810 micro/nano hybrid structured sensing electrodes on a 8 inch reclaimed wafer. The self-assembled monolayer (SAM) process was then employed to sequentially modify the electrode surface with 11-mercaptoundecanoic acid (11-MUA), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC)/ N-hydroxysuccinimide (NHS), anti-ORSV, and ORSV. EIS was conducted for the ORSV concentration detection. Experimental results demonstrated that the ORSV concentration in a virus infected orchid leaf could be effectively detected. When compared with the ELISA kit, our device possesses a wider linear detection range (0.5–50,000 ng/mL) and a higher sensitivity. The specificity of our device on ORSV detection was also confirmed. Our sensing device retains advantages, such as label-free, lower amounts of the antibody and target sample required, low detection time, and a wider linear detection range. Those results imply the feasibility of our sensing device in field applications.