In this study, a label-free detection approach for effective detection of the odontoglossum ringspot virus (ORSV) infected orchids has been developed. We used semiconductor fabrication process to fabricate 1,810 micro/nano hybrid structured sensing electrodes on a 8 inch reclaimed wafer. The self-assembled monolayer (SAM) process was then employed to sequentially modify the electrode surface with 11-mercaptoundecanoic acid (11-MUA), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC)/ N-hydroxysuccinimide (NHS), anti-ORSV, and ORSV. EIS was conducted for the ORSV concentration detection. Experimental results demonstrated that the ORSV concentration in a virus infected orchid leaf could be effectively detected. When compared with the ELISA kit, our device possesses a wider linear detection range (0.5–50,000 ng/mL) and a higher sensitivity. The specificity of our device on ORSV detection was also confirmed. Our sensing device retains advantages, such as label-free, lower amounts of the antibody and target sample required, low detection time, and a wider linear detection range. Those results imply the feasibility of our sensing device in field applications.

This content is only available via PDF.
You do not currently have access to this content.