Ocean wave power is a promising renewable energy source for future energy production. It has however been difficult to find a cost-effective solution to convert the wave energy into electricity. The harsh marine environment and the fact that wave power is delivered with high forces at low speeds makes design of durable mechanical structures and efficient energy conversion challenging. The dimensioning forces strongly depend on the wave power concept, the Wave Energy Converter (WEC) implementation and the actual Power Take-Off (PTO) system.

A WEC using a winch as a Power Take-Off system, i.e. a Winch Based Point Absorber (WBPA), could potentially accomplish a low Levelized Cost Of Energy (LCOE) if a key component — a low-cost, durable and efficient winch that can deal with high loads — can be developed.

A key problem for achieving a durable winch is to find a force transmitting solution that can deal with these high loads and handle up to 80 million cycles. In this article we propose a design solution for a force transmitting chain in a WBPA system where elastomeric bearings are used as a means to achieve the relative motion between the links in the chain. With this solution no sliding is present and the angular motion is achieved as a deformation in the elastomeric bearing when the chain is winded on a drum.

The link was designed primarily to minimize the number of joints in the chain: Thereby the maximum allowed relative angle between the links when rolled up over the drum should be as large as possible within practical limits. The angle is to be handled by the elastomeric bearing. A detailed strength analysis of the link has been performed as well as topology optimization to increase the strength to weight ratio.

A test rig for a first proof of concept testing has been developed and the first preliminary test results indicate that this concept with using elastomeric bearings can be a potential solution for a durable chain and should be analyzed further for fatigue conditions and under water operations.

This content is only available via PDF.
You do not currently have access to this content.