Vibrations of roller bearings will be affected when a surface crack is caused in the bearing system. Thus, it is very helpful to study relationships between the sizes of the surface crack and vibrations of the bearings for detecting and diagnosing the surface crack in the bearing systems. In this study, a dynamic finite element model for a roller bearing with a vertical or slant surface crack on its outer race is presented using an explicit dynamic finite element software package. All components of the roller bearing are formulated as elastic bodies in the finite element model, which can consider the elastic deformations in the bearing system. Effects of the depth and slope angle of the surface crack on the contact forces between the roller and races of the bearing are studied, as well as the vibrations of the bearing. The simulation results show that the explicit dynamic finite element analysis method can be applied for studying the vibration characteristics produced by a vertical or slant surface crack in roller bearings.

This content is only available via PDF.
You do not currently have access to this content.