Neuroanatomy is an essential course for healthcare students and imparts knowledge regarding the structure of the human nervous system. Its study requires calling upon many skills from students as well as educators. Particularly, challenging is to understand 3-dimensional structures and their relative positions and interfaces from primarily 2-dimensional images and MRI scans. Use of multiple modalities in teaching has been proposed, particularly supplementation of existing teaching methods with plastinated versions of actual brains. While the benefits of using plastinated specimens are many, it is a labor-intensive process that results in a relatively fragile specimen. Furthermore, any time idiosyncrasies of a specimen make it especially valuable, plastination is limited, because it results in only one specimen. To alleviate these issues, the authors propose scanning and reproduction of these samples using digital modeling and manufacturing techniques focused particularly on 3-D printing. In the context of converting from a purely preservation process to one of replication, it becomes immediately clear that the problem of proper mass reproduction, takes on a Design for Manufacture (DFM) construct, particularly, a design for assembly/disassembly/modularity shape. We show how this problem can be approached within the context of DFM, posed as a mathematical optimization problem and present preliminary results from our experiments.
Skip Nav Destination
ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
August 2–5, 2015
Boston, Massachusetts, USA
Conference Sponsors:
- Design Engineering Division
- Computers and Information in Engineering Division
ISBN:
978-0-7918-5711-3
PROCEEDINGS PAPER
How Can DFM Help the Study of Neuroanatomy?
Vijitashwa Pandey,
Vijitashwa Pandey
Oakland University, Rochester, MI
Search for other works by this author on:
James Wolfe,
James Wolfe
Independent Researcher, Toledo, OH
Search for other works by this author on:
Vipul Shukla
Vipul Shukla
The University of Toledo, Toledo, OH
Search for other works by this author on:
Vijitashwa Pandey
Oakland University, Rochester, MI
James Wolfe
Independent Researcher, Toledo, OH
Vipul Shukla
The University of Toledo, Toledo, OH
Paper No:
DETC2015-47540, V004T05A055; 10 pages
Published Online:
January 19, 2016
Citation
Pandey, V, Wolfe, J, & Shukla, V. "How Can DFM Help the Study of Neuroanatomy?." Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 4: 20th Design for Manufacturing and the Life Cycle Conference; 9th International Conference on Micro- and Nanosystems. Boston, Massachusetts, USA. August 2–5, 2015. V004T05A055. ASME. https://doi.org/10.1115/DETC2015-47540
Download citation file:
14
Views
0
Citations
Related Proceedings Papers
Related Articles
Editorial
J. Manuf. Sci. Eng (February,2007)
An International Electronic and Interactive Teaching and Life-Long Learning Platform for Gas Turbine Technology in the 21st Century
J. Eng. Gas Turbines Power (July,2001)
High-Density Transcranial Direct Current Stimulation (HD-tDCS): Hardware Interface
J. Med. Devices (June,2009)
Related Chapters
Design and Application of Automated English Writing Scoring System
International Conference on Information Technology and Computer Science, 3rd (ITCS 2011)
Design and Implementation of Assignment Management System Based on Technical Evaluation
International Conference on Computer Technology and Development, 3rd (ICCTD 2011)
Thinking of the Piano Teaching
International Conference on Computer Technology and Development, 3rd (ICCTD 2011)