Micro and nano devices incorporating bi-stable structural elements such as micro beams are designed to exploit the fact that the latter possess two stable configurations at the same actuation force. Generally, the transition of a micro beam from one table state to another, namely the snap-through which is essentially dynamic phenomenon, can be initiated by either static or dynamic activations. In this work, results of theoretical and numerical investigations of the transient dynamics of a pre-stressed initially curved double clamped micro beams actuated by a time dependent electrostatic load are presented. We show by means of a reduced order model of a shallow beam, derived using the Galerkin procedure, that the beam may exhibit various types of responses. For certain beam characteristics, the second stable state is inaccessible under a static loading but is attainable only by means of a specially tailored dynamic actuation. This gives way to the possibility of trapping the dynamically bi-stable beam at a stable configuration which is close to the electrode by applying special loading sequences.

This content is only available via PDF.
You do not currently have access to this content.