Solar power systems are becoming increasingly popular due to the fact that solar power can offer time and money saving solutions for off-grid and grid-connected homes, cabins, and businesses with clean and affordable energy. However, there are still significant opportunities to reduce the cost of solar power systems by optimizing system design. We employ system modeling and simulation methods to compare a commercial rooftop solar system with a new concept for the same application, namely Mega Module system. In order to accomplish this, a solar power system’s lifecycle is divided into three phases, namely manufacturing, installation, and maintenance. Specifically, a SysML-based conceptual model was first constructed, based on which, Arena simulation models were built for three phases of the two systems. Then, we performed input analysis on data collected onsite for the two systems, and output analysis of the theoretical seconds/watt of all three phases based on reasonable assumptions. The results of the simulation study indicate that although it increases the manufacturing time, the Mega Module system saves a significant amount of time in the installation phase and a relatively small amount of time in the maintenance phase, and thus can be more cost-effective in the long term. The case study further demonstrates the feasibility and potential to reduce costs of product-service systems by quick installation and optimization using system modeling and simulation methods.

This content is only available via PDF.
You do not currently have access to this content.