This paper presents a multidisciplinary design optimization framework for modular industrial robots. An automated design framework, containing physics based high fidelity models for dynamic simulation and structural strength analyses are utilized and seamlessly integrated with a geometry model. The proposed framework utilizes well-established methods such as metamodeling and multi-level optimization in order to speed up the design optimization process. The contribution of the paper is to show that by applying a merger of well-established methods, the computational cost can be cut significantly, enabling search for truly novel concepts.
Volume Subject Area:
37th Design Automation Conference
This content is only available via PDF.
Copyright © 2011
by ASME
You do not currently have access to this content.