Large complex systems exhibit complex nominal and failure behavior and understanding that behavior is critical to the accurate assessment of risk. However, this assessment is difficult to accomplish in the early design stage. Multiple subsystem interactions and emergent behavior further complicate early design risk analysis. The goal of this paper is to demonstrate necessary modifications of an existing function-based failure assessment tool for application to the large complex system design domain. Specifically, this paper demonstrates how specific adaptations to this early, qualitative approach to system behavioral simulation and analysis help overcome some of the challenges to large complex system design. In this paper, a boiling water nuclear reactor design serves as a motivating case study for showing how this approach can capture complex subsystem interactions, identify emergent behavior trends, and assess failures at both the component and system level.

This content is only available via PDF.
You do not currently have access to this content.