The least-squares finite element method (LSFEM), based on minimizing the l2-norm of the residual is now well established as a proper approach to deal with the convection dominated fluid dynamic equations. The least-squares finite element method has a number of attractive characteristics such as the lack of an inf-sup condition and the resulting symmetric positive system of algebraic equations unlike Galerkin finite element method (GFEM). However, the higher continuity requirements for second-order terms in the governing equations force the introduction of additional unknowns through the use of an equivalent first-order system of equations or the use of C1 continuous basis functions. These additional unknowns lead to increased memory and computational requirements that have limited the application of LSFEM to large-scale practical problems. A novel finite element method is proposed that employs a least-squares method for first-order derivatives and a Galerkin method for second order derivatives, thereby avoiding the need for additional unknowns required by a pure LSFEM approach. When the unsteady form of the governing equations is used, a streamline upwinding term is introduced naturally by the least-squares method. Resulting system matrix is always symmetric and positive definite and can be solved by iterative solvers like pre-conditioned conjugate gradient method. The method is stable for convection-dominated flows and allows for equal-order basis functions for both pressure and velocity. The method has been successfully applied here to solve complex buoyancy-driven flow with Boussinesq approximation in a square cavity with differentially heated vertical walls using low-order C0 continuous elements.
Skip Nav Destination
ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
August 15–18, 2010
Montreal, Quebec, Canada
Conference Sponsors:
- Design Engineering Division and Computers in Engineering Division
ISBN:
978-0-7918-4411-3
PROCEEDINGS PAPER
The Least-Squares Galerkin Split Finite Element Method for Buoyancy-Driven Flow
Rajeev Kumar,
Rajeev Kumar
The University of Texas at Arlington, Arlington, TX
Search for other works by this author on:
Brian H. Dennis
Brian H. Dennis
The University of Texas at Arlington, Arlington, TX
Search for other works by this author on:
Rajeev Kumar
The University of Texas at Arlington, Arlington, TX
Brian H. Dennis
The University of Texas at Arlington, Arlington, TX
Paper No:
DETC2010-29157, pp. 165-176; 12 pages
Published Online:
March 8, 2011
Citation
Kumar, R, & Dennis, BH. "The Least-Squares Galerkin Split Finite Element Method for Buoyancy-Driven Flow." Proceedings of the ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 3: 30th Computers and Information in Engineering Conference, Parts A and B. Montreal, Quebec, Canada. August 15–18, 2010. pp. 165-176. ASME. https://doi.org/10.1115/DETC2010-29157
Download citation file:
4
Views
0
Citations
Related Proceedings Papers
Related Articles
Turbulent Rotating Rayleigh–Benard Convection: Spatiotemporal and Statistical Study
J. Heat Transfer (February,2009)
Natural Convection in an Inclined Fluid Layer With a Transverse Magnetic Field: Analogy With a Porous Medium
J. Heat Transfer (February,1995)
An Extended Finite Element Method for Two-Phase Fluids
J. Appl. Mech (January,2003)
Related Chapters
Completing the Picture
Air Engines: The History, Science, and Reality of the Perfect Engine
Fundamentals of Finite Element and Finite Volume Methods
Compact Heat Exchangers: Analysis, Design and Optimization using FEM and CFD Approach
Conclusions
Introduction to Finite Element, Boundary Element, and Meshless Methods: With Applications to Heat Transfer and Fluid Flow