A time-accurate finite element model for predicting the dynamic response of tracked vehicles is presented. The model supports flexible continuous belt-type tracks and segmented-tracks consisting of rigid and/or flexible links connected using revolute joints. The flexible multibody system representing the tracked vehicle is modeled using rigid bodies, flexible bodies, joints and actuators. Flexible bodies are modeled using total-Lagrangian brick, membrane, beam, truss and linear/rotational spring elements. The penalty method is used to impose the joint/contact constraints. An asperity-based friction model is used to model joint/contact friction. A recursive bounding box contact search algorithm is used to allow fast contact detection between finite elements and other elements as well as general triangular/quadrilateral surfaces. The governing equations of motion are solved along with joint/constraint equations using a time-accurate explicit solution procedure. The model can help improve the design of tracked vehicles including increasing the vehicle’s stability and durability.

This content is only available via PDF.
You do not currently have access to this content.