The ultimate goal of this work is to develop an automated MEMS-based lab-on-a-chip microinjector. This paper outlines one phase of that work: testing the feasibility of a pumpless, polysilicon MEMS microneedle for use in the proposed MEMS-based lab-on-a-chip microinjector. The pumpless MEMS microneedle operates on the principle of attraction and repulsion of DNA using electrostatic charges. Prototype microneedles were fabricated using a multi-layer surface micromachining process. DNA stained with a fluorescent dye (4‘, 6-DIAMIDINO-2-PHENYLINDOLE DIHYDROCHLORIDE or DAPI) was visualized using fluorescent illumination as the DNA was attracted to and repelled from the tips of MEMS microneedles using a 1.5 V DC source. The pumpless MEMS microneedle represents an important and significant step in the development of a self-contained, automated, MEMS-based microinjection system.

This content is only available via PDF.
You do not currently have access to this content.