This paper describes the simulation, design, and testing of a high-performance six degree-of-freedom hexapod for the purpose of isolating sensitive payloads from low-frequency vibrations. Design criteria required the hexapod to support a generic payload up to 500 lb with an isolation plunge frequency of approximately 1 Hz. Simulations were performed using Matlab in order to determine the optimum geometry of the base and platform structures in order to provide the best combination of translation-rotation uncoupling, frequency spread, plunge frequency, and jitter. Based on these simulation results, hexapod base and platform structures were designed and fabricated based on a 50 inch-diameter platform size. All of the accumulators and pneumatic hardware were embedded into the base structure to allow for a totally contained system. Modal testing of the hexapod was performed in order to verify the modes predicted by the model.

This content is only available via PDF.
You do not currently have access to this content.