Resources for development projects are often scarce in the real world. Generally, many projects are to be completed that rely on a common pool of resources. Besides resource constraints, there exists data dependency among tasks within each project. A genetic algorithm approach with one-point uniform crossover and a refresh operator is proposed to minimize the overall duration or makespan of multiple projects in a resource constrained multi project scheduling problem (RCMPSP) without violating inter-project resource constraints or intra-project precedence constraints. The proposed GA incorporates stochastic feedback or rework of tasks. It has the capability of capturing the local optimum for each generation and therefore ensuring a global best solution. The proposed Genetic Algorithm, with several variants of GA parameters is tested on sample scheduling problems with and without stochastic feedback. This algorithm demonstrates to provide a quick convergence to a global optimal solution and detect the most likely makespan range for parallel projects of tasks with stochastic feedback.

This content is only available via PDF.
You do not currently have access to this content.