Abstract

Conventional vibration isolation mounts are not as effective as expected on a practical foundation whose resonant frequencies normally are within the bandwidth of interest. In addition, the low frequency enhancement is a characteristic of the passive mounts. Applying inertia actuators to the bottom attachment plate of the conventional mounts overcomes these shortcomings and enhances their performance significantly. This design concept has universal application since it is applicable to any dynamic system. It requires very little power and force capacity, i.e., a small percentage of the disturbance force, from the actuators to be effective for frequencies higher than the resonant frequency of the mount itself. The effectiveness of the proposed mounts for the machinery is demonstrated on the load transmissibility reduction at the foundation support (fixed end) due to disturbance from machinery above mounts. On the other hand, the vibration magnitude reduction of equipment above mounts due to disturbance from the foundation is used for evaluating the equipment isolation effectiveness. There is no stabilty or degradation problem when a number of the passive-active mounts are used on the same foundation. Furthermore, the more of this type of mounts used on a foundation the more effective the vibration suppression and the smaller actuator force requirement for each passive-active mount.

This content is only available via PDF.
You do not currently have access to this content.