Abstract

In the analysis of complex phenomena of acoustic systems, the computational modeling requires special attention for a realistic representation of the physics. As a powerful tool, the finite element method has been widely used in the study of complex systems. In order to capture the important physical phenomena, p-finite elements and/or hp-finite elements are employed. The reproducing kernel particle methods (RKPM) are emerging as an effective alternative due to the elimination of a mesh, and the ability to analyze a specific frequency range. Additionally, a wavelet particle method based on the multiresolution analysis encountered in signal processing has been developed. The interpolation functions consist of spline functions with built-in window. A variation in the size of the window implies a geometrical refinement, and allows the filtering of the desired frequency range. Preliminary analysis of the wave equation shows the effectiveness of this approach. The frequency/wave number relationship of the continuum case can be closely simulated by using the reproducing kernel particle methods. A similar methodology is also developed for the Timoshenko beam.

This content is only available via PDF.
You do not currently have access to this content.