Abstract

The strength distribution of reaction bonded silicon carbide tubes that failed by internal pressurization was predicted from strength distributions obtained from simple laboratory test specimens at room temperature. The strength distributions of flexure bars, C-rings tested in tension, C-rings tested in compression, diametrally compressed O-rings, and internally pressurized short tubes were compared to the strength distribution of internally pressurized long tubes. The methodology involved application of Weibull statistical theory using elasticity theory to define the stress distributions in the simple specimens. The flexural specimens did not yield acceptable results, since they were ground prior to testing, thereby altering their flaw population in comparison with the processing induced flaw populations of the tubular specimens. However, the short tube internal pressure test, the c-ring tested in tension and the diametrally compressed o-ring test configurations yielded accurate predictions, since these specimens more accurately represent the strength limiting flaw population in the long tubes.

This content is only available via PDF.
You do not currently have access to this content.