Abstract

A direct variational approach with a floating frame is presented to derive the ordinary differential equations of motion of a flexible rod, constant crank speed slider crank mechanism. Potential energy terms contained in the derivation include beam bending energy and energy in foreshortening of the rod tip (which were selected because of the importance of these terms in a pinned-pinned rod parametric resonance). A symbolic manipulator code is used to reduce the constrained equations of motion to unconstrained nonlinear equations. A linearized version of these equations is used to explore parametric resonance stability-instability zones at low crank speeds and small deflections by a monodromy matrix technique.

This content is only available via PDF.
You do not currently have access to this content.