Abstract

The influence of rotational speed, oil temperature and supply pressure on the squeeze film pressure and fluid forces is investigated experimentally for a partially sealed squeeze film damper (SFD) test rig executing circular centered orbits. Experimental Tesults show that the sealed damper produces higher damping forces than an open end SFD, though it is more prone to produce oil cavitation. As a result, the peak-to-peak pressures and the tangential force (damping force) decrease with increasing rotational speed; while, the radial force (stiffhening force) becomes negative due to the large extent of the cavitation zone. The tangential force decreases and the radial force increases with increasing lubricant temperature. The squeeze film pressure and film force increase as the supply pressure rises. The film cavitation onset is determined by the level of supply pressure and rotational speed.

This content is only available via PDF.
You do not currently have access to this content.