Abstract

A new method of formulating the generalized equations of motion for simple-closed (single loop) spatial linkages is presented in this paper. This method is based on the generalized principle of D’Alembert and the use of the transformation Jacobian matrices. The number of the differential equations of motion is minimized by performing the method of generalized coordinate partitioning in the joint space. Based on this formulation, a computational algorithm for computer simulation the dynamic motions of the linkage is developed, this algorithm is not only numerically stable but also fully exploits the efficient recursive computational schemes developed earlier for open kinematic chains. Two numerical examples are presented to demonstrate the stability and efficiency of the algorithm.

This content is only available via PDF.
You do not currently have access to this content.