Abstract

The subject of this paper is the computation of the first three moments of bounded regions imbedded in the three-dimensional Euclidean space. The method adopted here is based upon a repeated application of Gauss’s Divergence Theorem to reduce the computation of the said moments — volume, vector first moment and inertia tensor — to line integration. Explicit, readily implementable formulae are developed to evaluate the said moments for arbitrary solids, given their piecewise-linearly approximated boundary. An example is included that illustrates the applicability of the formulae.

This content is only available via PDF.
You do not currently have access to this content.