Abstract

Linkages are inherently light, inexpensive, strong, adaptable to high speeds and have little friction. Moreover the class of functions suitable for linkage representation is large. For all these reasons numerous recent works deal with the problem of design mechanisms for robotic applications, but very often in terms of components such as gripper, transmission, balancing.

We investigate a new application for linkages, using them to design industrial manipulator. The selected mechanism for this application is a four bar linkage with an adjustable lengh for exact path generation. This adjustment is performed by a track or cam which is substituted to a bar. By this mean, we define a cam-modulated linkage which possess superior accuracy potential and is capable of accomodating of industrial design restrictions.

Such a kinematic chain is free from structural error for path generation and the presence of the track introduces the flexibility and versality in the usefull four bar chain. The synthesis technique of cam modulated linkage utilizes loop closure equations, envelop theory to find the centerline and the profile of the track. These techniques provide a systematic approach to the design of mechanism for path generation when extreme accuracy is required.

In order to complete an contribution, we take in consideration the static balancing of the synthesized manipulator. To achieve static mass balancing we use the potential energy storage capabilities of linear springs, and integrated it with the non-linear motion of mechanism to provide an exact value of the desired counter loading functions.

Examples are worked to demonstrate applications of these procedures and to illustrate the industrial potential of spring balancing and cam-modulated linkage.

This content is only available via PDF.
You do not currently have access to this content.