Abstract

The Thermal Radiation Simulator (TRS) at the U.S. Army Ballistic Research Laboratory uses aluminum powder reacting with liquid oxygen to create a large jet like flame. The flame acts as a large thermally radiant wall, exposing targets to a nuclear weapon equivalent. The aluminum powder is driven pneumatically to the combustion chamber from a pressurized containment vessel. Unfortunately the thermal output of the flame oscillates with large amplitude relative to the mean yield. The fluctuating mass flow rate of aluminum powder from the aluminum powder containment vessel seemed the cause of the unstable output.

A computer model of the aluminum vessel was constructed to determine the pressure dynamics in the pressure vessel. The aluminum powder was assumed to behave as a Newtonian liquid. The pneumatic fluid was assumed to be an ideal gas. The model concentrated inside the vessel and at the exit. The result was to determine the mass flow rate of aluminum from the exit given the inlet gas pressures.

The model did reveal the source of mass flow fluctuations not to be caused directly by the existing pneumatic set-up. The variation was shown to be perturbated by forces outside the pressure vessel. Once the outside influence was eliminated, the model showed a clean mean flow rate of aluminum powder. The results were applied to the TRS and the thermal output was stabilized.

This content is only available via PDF.
You do not currently have access to this content.