Abstract

Jet impingement is a cooling technique commonly employed in combustor liner cooling and high-pressure gas turbine blades. However, jets from upstream impingement holes reduce the effectiveness of downstream jets due to jet deflection in the direction of crossflow. In order to avoid this phenomenon and provide an enhanced cooling on the target surface, we have attempted to come up with a novel design called “crossflow diverters”. Crossflow diverters are U-shaped ribs that are placed between jets in the crossflow direction (under maximum crossflow condition). In this study, the baseline case is jet impingement onto a smooth surface with 10 rows of jet impingement holes, jet-to-jet spacing of X/D = Y/D = 6 and jet-to-target spacing of Z/D = 2. Crossflow diverters with thickness ‘t’ of 1.5875 mm, height ‘h’ of 2D placed in the streamwise direction at a distance of X = 2D from center of the jet have been investigated experimentally. Transient liquid crystal thermography technique has been used to obtain detailed measurement of heat transfer coefficient for four jet diameter based Reynolds numbers of 3500, 5000, 7500, 12000. It has been observed that crossflow diverters protect the downstream jets from upstream jet deflection thereby maximizing their stagnation cooling potential. An average of 15–30% enhancement in Nusselt number is obtained over the flow range tested. However, this comes at the expense of increase in pumping power. Pressure drop for the enhanced geometry is 1–1.5 times the pressure drop for baseline impingement case. At a constant pumping power, crossflow diverters produce 9–15% enhancement in heat transfer coefficient as compared to baseline smooth case.

This content is only available via PDF.
You do not currently have access to this content.