Abstract
Scroll expanders are generally used for low temperature power generation applications due to their inherently small built-in volume ratio. The working fluid and operating conditions play an important role in the expander performance as well as its physical size and volume ratio. Hence, a comparative study of scroll expander performance was carried out between two different working fluids, R433C and supercritical (s-CO2). The s-CO2 Brayton cycle achieved a maximum cycle efficiency of 13.6% at an expander supply pressure of 11 MPa. Two separate scroll geometries were modeled for supercritical Organic Rankine Cycle (SORC) using R433C and s-CO2 Brayton cycle for the operating conditions that provided the maximum cycle performance. The s-CO2 scroll geometry achieved a maximum expander efficiency of 80% with a volume ratio of 2.5 and a diameter of 19 cm. The high inlet temperatures required a much higher volume ratio of 6.2 and scroll diameter of 30 cm for the R433C based SORC leading to greater leakages and lower expander efficiency of 62%. The comparative study shows that s-CO2 is better suited for scroll expander than R433C at such high expander supply temperatures.