Abstract

Scroll expanders are generally used for low temperature power generation applications due to their inherently small built-in volume ratio. The working fluid and operating conditions play an important role in the expander performance as well as its physical size and volume ratio. Hence, a comparative study of scroll expander performance was carried out between two different working fluids, R433C and supercritical (s-CO2). The s-CO2 Brayton cycle achieved a maximum cycle efficiency of 13.6% at an expander supply pressure of 11 MPa. Two separate scroll geometries were modeled for supercritical Organic Rankine Cycle (SORC) using R433C and s-CO2 Brayton cycle for the operating conditions that provided the maximum cycle performance. The s-CO2 scroll geometry achieved a maximum expander efficiency of 80% with a volume ratio of 2.5 and a diameter of 19 cm. The high inlet temperatures required a much higher volume ratio of 6.2 and scroll diameter of 30 cm for the R433C based SORC leading to greater leakages and lower expander efficiency of 62%. The comparative study shows that s-CO2 is better suited for scroll expander than R433C at such high expander supply temperatures.

This content is only available via PDF.
You do not currently have access to this content.