This is Part 2 of an examination of influence of inlet flow conditions on the performance and operating range of centrifugal compressor vaned diffusers. The paper describes tests of straight-channel type diffuser, sometimes called a wedge-vane diffuser, and compares the results with those from the discrete-passage diffusers described in Part 1. Effects of diffuser inlet Mach number, flow angle, blockage, and axial flow non-uniformity on diffuser pressure recovery and operating range are addressed.

The straight-channel diffuser investigated has 30 vanes and was designed for the same aerodynamic duty as the discrete-passage diffuser described in Part 1. The ranges of the overall pressure recovery coefficients were 0.65–0.78 for the straight-channel diffuser and 0.60–0.70 for the discrete-passage diffuser; the pressure recovery of the straight-channel diffuser was roughly 10% higher than that of the discrete-passage diffuser. Both types of the diffusers showed similar behavior regarding the dependence on diffuser inlet flow angle and the insensitivity of the performance to inlet flow field axial distortion and Mach number. The operating range of the straight-channel diffuser, as for the discrete-passage diffusers was limited by the onset of rotating stall at a fixed momentum-averaged flow angle into the diffuser, which was for the straight-channel diffuser, αcrit = 70° ±0.5°.

The background, nomenclature and description of the facility and method are all given in Part 1.

This content is only available via PDF.