Abstract
Aerothermal performance of an asymmetrical-profile, leading-edge jet impingement array is studied using numerical and experimental techniques. This array consists of a single row of 9 jets impinging on a leading edge of diameter ratio D/d = 2, and a distinct suction side/pressure side akin to that of an actual turbine blade. Two different jet-to-target heights are tested, while the jet spacing of 4 jet diameters is kept constant. A range of jet-averaged Reynolds numbers between 20k – 80k are tested. The mean flow field of the mid-jet plane is quantified experimentally, through a non-intrusive experimental method of Particle Image Velocimetry (PIV), while area-averaged heat transfer is measured by the constant temperature copper block technique. The target surface is divided into several copper blocks to investigate the area-averaged heat transfer at each jet. The numerical portion of the presented work serves to investigate the fidelity of the Reynolds Averaged Navier-Stokes (RANS) k-ω turbulence model and how well it can predict the flow field within the geometrical domain of the leading edge.