Abstract

In this paper, the temperature-dependent fatigue damage evolution of fiber-reinforced ceramic-matrix composites (CMCs) is investigated. The fatigue loading/unloading constitutive model considering the effect of temperature is developed based on the damage mechanisms of matrix cracking, interface debonding, and repeated sliding between the fiber and the matrix. The relationships between the fatigue loading/unloading hysteresis loops, testing temperature, applied cycle number, peak stress, and fiber/matrix interface debonding and sliding are established. The evolution of fatigue loading/unloading hysteresis loops, interface debonding and sliding length with applied cycle number is analyzed. The effects of temperature, peak stress level, applied cycle number, interface shear stress, and interface debonding energy on the fatigue damage evolution are discussed based on the developed temperature-dependent fatigue loading/unloading constitutive model. The experimental fatigue damage evolution of SiC/SiC composite at 600°C, 800°C, and 1000°C in inert atmosphere, 1000°C in air and in steam atmosphere, and 1300°C in air atmosphere are predicted. The interface shear stress of SiC/SiC composite decreases with temperature, and the degradation rate of interface shear stress increases with temperature.

This content is only available via PDF.
You do not currently have access to this content.