To increase the power output without adding additional stages, ultra-high bypass ratio engine, which has larger diameter low pressure turbine, attracts more and more attention because of its huge advantage. This tendency will lead to aggressive (high diffusion) intermediate turbine duct design. Much work has been done to investigate flow mechanisms in this kind of duct as well as its design criterion with numerical and experimental methods. Usually intermediate turbine duct simplified from real engine structure was adopted with upstream and downstream blades. However, cavity purge mass flow exists to disturb the duct flow field in real engine to change its performance. Naturally, the wall vortex pairs would develop in different ways. In addition to that, purge flow rate changes at different engine representative operating conditions. This paper deals with the influence of turbine purge flow on the aerodynamic performance of an aggressive intermediate turbine duct. The objective is to reveal the physical mechanism of purge flow ejected from the wheel-space and its effects on the duct flow field. Ten cases with and without cavity are simulated simultaneously. On one hand, the influence of cavity structure without purge flow on the flow field inside duct could be discussed. On the other hand, the effect of purge flow rate on flow field could be analyzed to investigate the mechanisms at different engine operating conditions. According to this paper, cavity structure is beneficial for pressure loss. And the influence concentrates near hub and duct inlet.

This content is only available via PDF.
You do not currently have access to this content.