The exploration of new aero-engine configurations drives unseen and complex dynamic behavior which can only be captured accurately with enhanced modeling techniques. In an earlier publication, it was established that it is possible to analyze large engine models using high-fidelity two-dimensional (2D) axisymmetric harmonic and three-dimensional (3D) shell and solid elements. This finding stands in contrast to the relatively crude one-dimensional (1D) model simplifications that were introduced several decades ago. While motivated by limited computing power and easily obtained gyroscopic terms, these models are still common in the industry today. In spite of staggering advances in computation, however, said enhanced finite element rotor models are still considered to be quite large. When transitioning from the traditional 1D to the fully 3D rotor model, for example, one encounters an increase in model size of three orders of magnitude. This motivates the use of model reduction techniques such as the External Superelement (SE) which is obtained by component mode synthesis (CMS). The External SE represents a structural component by its physical attachment points, strategically selected interior grid points, and a linear combination of its dynamic modes. Its advantages are reduced computational cost, the ability to solve very large problems, the protection of intellectual property, and the enablement of a modular model description that promotes parallel processing as well as the utilization of high performance computing (HPC). In this paper, the analysis of a realistic aircraft engine is presented in which its rotating structures are modeled with high-fidelity 3D solid/shell elements. The dynamics of the engine assembly are solved using modal analysis and External SE technology with the goals to reduce wall time and improve efficiency. A detailed comparison of wall time is presented to quantify the associated performance gain.

This content is only available via PDF.
You do not currently have access to this content.