Eulerian-Lagrangian hybrid method is implemented for the prediction of liquid atomization phenomena produced by 2 liquid water jets impinging by an angle of 40 deg. in quiet ambient air. To calculate the flow fields with liquid/gas interface, Eulerian analyses are conducted inside a fixed computational grid system. After the atomization occurs, every droplet is converted to a spherical particle. The motion of particles are tracked in Lagrangian form. For the validation of the developed Eulerian-Lagrangian hybrid method, flow visualization by using a high-speed video camera is carried out. To obtain quantitative values of spray characteristics, the liquid mass flux distribution in space is measured by utilizing a patternator. Numerical and experimental results of atomization process and mass flux distribution of spray show a similarity, and thus the developed method is evaluated that it has potential to predict spray characteristics produced by liquid sheet atomization. The developed numerical method can calculate unsteady spray distributions not only at the plane close to the injector but also far downstream. The spray mass flux distribution in the transient state, which is hard to measure by experiment, is demonstrated.

This content is only available via PDF.
You do not currently have access to this content.