In the design process, new burners are generally tested in combustion test rigs. With these experiments, as well as with CFD, finite element calculations, and low-order network models, the burner’s performance in the full-scale engine is sought to be predicted. Especially, information about the thermoacoustic behaviour and the emissions is very important. As the thermoacoustics strongly depend on the acoustic boundary conditions of the system, it is obvious that test rig conditions should match or be close to those of the full-scale engine. This is, however, generally not the case. Hence, if the combustion process in the test rig is stable at certain operating conditions, it may show unfavourable dynamics at the same conditions in the engine. In previous works, the authors introduced an active control scheme which is able to mimic almost arbitrary acoustic boundary conditions. Thus, the test rig properties can be tuned to correspond to those of the full-scale engine. The acoustic boundary conditions were manipulated using woofers. In the present study, an actuator with higher control authority is investigated, which could be used to apply the control scheme in industrial test rigs. The actuator modulates an air mass flow to generate an acoustic excitation. However, in contrast to the woofers, it exhibits a strong non-linear response regarding amplitude and frequency. Thus, the control scheme is further developed to account for these non-linear transfer characteristics. This modified control scheme is then applied to change the acoustic boundary conditions of an atmospheric swirl-stabilized combustion test rig. Excellent results were obtained in terms of changing the reflection coefficient to different levels. By manipulating its phase, different resonance frequencies could be imposed without any hardware changes. The non-linear control approach is not restricted to the actuator used in this study and might therefore be of use for other actuators as well.

This content is only available via PDF.
You do not currently have access to this content.