The following work presents a new type of hybrid journal bearing developed for enabling oil-free operation of high performance turbomachinery. The new design integrates compliant hydrostatic-hydrodynamic partitioned bearing pads with two flexibly mounted integral wire mesh dampers (IWMD). The primary aim of the new bearing configuration was to maximize the load carrying capacity and effective damping levels while maintaining adequate compliance to misalignment and variations in rotor geometry. The concept of operation is discussed along with the description of the bearing design. Several experiments using room temperature air as the working fluid were performed that demonstrate proof of concept, which include lift-off tests, bearing load tests, and rotordynamic characterization tests. The experiments demonstrate stable operation to 40,000 rpm (2.8 million DN) of a 2.750 in (70 mm) diameter bearing. In addition to the experimental results, an analytical model is presented for the compliant bearing system. The aeroelastic theory couples the steady state numerical solution of the compressible Reynolds flow equation with a flexible structure possessing translational and rotational compliance. This was achieved by formulating a fluid-structure force balance for each partitioned bearing pad while maintaining a global mass flow balance through the hydrostatic restrictors and bearing lands. Example numerical results for pad pressure profile, film thickness, torque, and leakage are shown.
Skip Nav Destination
ASME Turbo Expo 2008: Power for Land, Sea, and Air
June 9–13, 2008
Berlin, Germany
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-4315-4
PROCEEDINGS PAPER
Compliant Hybrid Journal Bearings Using Integral Wire Mesh Dampers
Bugra H. Ertas
Bugra H. Ertas
GE Global Research Center, Niskayuna, NY
Search for other works by this author on:
Bugra H. Ertas
GE Global Research Center, Niskayuna, NY
Paper No:
GT2008-50984, pp. 1215-1226; 12 pages
Published Online:
August 3, 2009
Citation
Ertas, BH. "Compliant Hybrid Journal Bearings Using Integral Wire Mesh Dampers." Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air. Volume 5: Structures and Dynamics, Parts A and B. Berlin, Germany. June 9–13, 2008. pp. 1215-1226. ASME. https://doi.org/10.1115/GT2008-50984
Download citation file:
19
Views
0
Citations
Related Proceedings Papers
Related Articles
Compliant Hybrid Journal Bearings Using Integral Wire Mesh Dampers
J. Eng. Gas Turbines Power (March,2009)
Scaling Laws for Ultra-Short Hydrostatic Gas Journal Bearings
J. Vib. Acoust (June,2005)
Hydrostatic Gas Journal Bearings for Micro-Turbomachinery
J. Vib. Acoust (April,2005)
Related Chapters
Hydrodynamic Lubrication
Design of Mechanical Bearings in Cardiac Assist Devices
Introduction
Design of Mechanical Bearings in Cardiac Assist Devices
Concluding Remarks
Design of Mechanical Bearings in Cardiac Assist Devices