Recuperator in a microturbine system, which has to work under a high temperature and high pressure condition, is a key component to improve the electricity efficiency of the system. High temperature and pressure may cause high stress inside the Cross-Wavy Primary Surface (CWPS) sheet, and it is essential to analyze the stress distribution to ensure the security while the recuperator is working. In this paper the combined thermomechanical design of a CWPS recuperator for a 100kW microturbine system is presented. With the ANSYS Parametric Design Language (APDL), calculation procedures for heat transfer and stress analysis are combined in order to perform a reliable strength prediction of the recuperator. A program has been generated, which allows the automatic generation of the numerical model, the mesh and the boundary conditions. Also with the energy minimum principle, an optimal configuration of the air and gas passages is obtained. The results show that the material of the primary sheet (0Cr18Ni11Nb) is reliable. The stress distribution changes with the different configuration of the passages. Since the air pressure is much higher than that of the exhaust gas, the configuration of the primary sheet is much better when the sectional area of the gas passage is larger than that of the air passage. If the pitch of the sheet is maintained at 2mm, the best configuration is obtained when the dimension of passage is at r = 0.35–0.42mm, R = 0.55–0.48mm.

This content is only available via PDF.
You do not currently have access to this content.