A technique for design optimization of a combustor is presented in this study. The technique entails the use of Computational Fluid Dynamics (CFD) and mathematical optimization to minimize the combustor exit temperature profile. The empirical and semi-empirical correlations commonly used for optimizing Combustor Exit Temperature profile do not guarantee optimum. As experimental approach is time consuming and costly, use is made of numerical techniques. Using CFD without mathematical optimisation on a trial-and-error basis, however, does not guarantee optimal solutions. A better approach that is viewed as too expensive is a combination of the two approaches, thereby, incorporating the influence of the variables automatically. In this study the combustor exit temperature profile is optimised. The optimum (uniform) combustor exit temperature profile depends on mainly the geometric parameters. The combustor exit temperature profile is affected as soon as flow enters the combustor. However, in gas turbine applications where care has been taken on the influence of upstream flow related conditions, the combustor exit temperature profile is changed by dilution hole pattern and size. In this study dilution hole parameters have been used as optimization variables. The combustor in the study is an experimental liquid fuelled atmospheric combustor with turbulent diffusion flame. The CFD simulations uses the Fluent code with Standard k-ε model. The optimisation is carried out with Snyman’s Dynamic-Q algorithm, which is specifically designed to handle constrained problems where the objective or constraint functions are expensive to evaluate. The optimization leads to a more uniform combustor exit temperature profile as compared to the original.

This content is only available via PDF.
You do not currently have access to this content.