A computational study to define the phenomena that lead to the onset of short length-scale (spike) rotating stall disturbances has been carried out. Unsteady simulations show there are two conditions necessary for the formation of spike disturbances, both of which are linked to the tip clearance flow. One is that the interface between the tip clearance and oncoming flows becomes parallel to the leading edge plane. The second is the initiation of backflow, stemming from the fluid in adjacent passages, at the trailing edge plane. The two criteria also imply a length scale circumferential extent of spike disturbances. The scenario developed is consistent with numerical simulations as well as with experimental observations of axial compressor stall inception. A comparison of calculations for multiple blades with those for single passages also allows statements to be made about the utility of single passage computations as a descriptor of compressor stall.

This content is only available via PDF.
You do not currently have access to this content.