A pressure-correction based, 3D Navier-Stokes CFD code was used to simulate the effects of turbine parameters on the tip leakage flow and vortex in a linear turbine cascade to understand the detailed flow physics. A baseline case simulation of a cascade was first conducted in order to validate the numerical procedure with experimental measurements. The effects of realistic tip clearance spacing, inlet conditions, and relative endwall motion were then sequentially simulated, while maintaining previously modified parameters. With each additional simulation, a detailed comparison of the leakage flow’s direction, pressure gradient, and mass flow, as well as the leakage vortex and its roll-up, size, losses, location, and interaction with other flow features, was conducted.

Part I of this two-part paper series focuses on the effect of reduced tip clearance height on the leakage flow and vortex. Reduced tip clearance resulted in less mass flow through the gap, a smaller leakage vortex, and less aerothermal losses in both the gap and the vortex. The shearing of the leakage jet and passage flow to which leakage vortex roll-up is usually attributed to was not observed in any of the simulations. Alternative explanations of the leakage vortex’s roll-up are presented. Additional secondary flows that were seen near the casing were also discussed.

A more thorough thesis on the research presented in this paper can be found at the World Wide Web address http://navier.aero.psu.edu/∼jat.

This content is only available via PDF.
You do not currently have access to this content.