Concentrated solar power (CSP) plants are one of several renewable energy technologies with significant potential to meet a part of our future energy demand. By now, CSP systems are used to supply photovoltaic or thermal power plant, but results on nanorectennas suggest the possibility to use this technology for direct energy conversion of solar radiation into electricity. A rectenna is a rectifying antenna that can be used to directly convert wave energy into DC electricity. Experiences in microwave applications have shown energy conversion efficiency in the order of 85%, and recently empirical tests have demonstrated that this technology can be used up to the infrared wavelength. The present paper, together with first preliminary results on the fabrication of the rectifier (the key element of a rectenna) and its electrical behavior, proposes the numerical simulation of a new CSP system where a receiver, heated by concentrated solar radiation, reemits infrared energy on the nanorectenna, which converts the incoming energy into electricity. In this way the receiver plays the role of a sunlight radiation converter to infrared energy.

The numerical simulation of the system consists of two steps. The first is a ray-tracing model to calculate the concentrator optical efficiency and the energy distribution on the focusing area of the parabolic mirror. The second step consists in the receiver temperature calculation as function of the incident solar radiation. The numerical procedure allows the calculation of the concentrator/receiver assembly performance which returns the energy incident on the nanorectenna as a function of external environmental conditions.

This content is only available via PDF.
You do not currently have access to this content.