Newest Issue

Research Papers

J. Mechanisms Robotics. 2018;10(4):041001-041001-14. doi:10.1115/1.4039500.

This paper presents the novel design of a bioinspired robot capable of generating spatial loading relative to its base. By looking to nature at how animals utilize their tails, a bioinspired structure is developed that utilizes a redundant serial chain of rigid links to mimic the continuous deformation of a biological tail. Individual links are connected by universal joints to enable a spatial robot workspace capable of generating spatial loading comprised of pitch, yaw, and roll direction contributions. Two sets of three cables are used to create two actuated segments along the robot. A dynamic model of the robot is derived using prescribed cable displacement trajectories as inputs to determine the resulting joint angle trajectories and cable tensions. Sensors are integrated on-board the robot to calculate joint angles and joint velocities in real-time for use in feedback control. The loading capabilities of the robot are analyzed, and an experimental prototype is integrated and demonstrated.

Commentary by Dr. Valentin Fuster
J. Mechanisms Robotics. 2018;10(4):041003-041003-12. doi:10.1115/1.4039001.

Multifingered hands have the capability of dexterous manipulation of grasped objects and thus significantly increase the capabilities of a robot equipped with multifingered hands. Inspired by a multijointed human finger and the hand, we propose a six degree-of-freedom (DOF) model of a three-fingered robotic hand as a parallel manipulator. Two kinds of contact, namely point contact with friction and rolling without slipping between the fingertips and the grasped object, are considered. The point contact with friction is modeled as a three DOF spherical joint, and for rolling without slipping, we use the resultant nonholonomic constraints between the grasped object and the fingers. With realistic limits on the joints in the fingers and dimensions of finger segments, we obtain the well-conditioned manipulation workspace of the parallel manipulator using a Monte Carlo-based method. Additionally, we present two new general results—it is shown that maximum position and orientation workspace is obtained when the cross-sectional area of the grasped object is approximately equal to the area of the palm of the hand and when rolling without slipping is ensured the size of the well-conditioned workspace is significantly larger (1.21.5 times). We also present representative experiments of manipulation by a human hand and show that the experimental results are in reasonable agreement with those obtained from simulations.

Commentary by Dr. Valentin Fuster
J. Mechanisms Robotics. 2018;10(4):041004-041004-13. doi:10.1115/1.4039399.

This paper addresses the passive realization of any selected planar elastic behavior with redundant elastic manipulators. The class of manipulators considered are either serial mechanisms having four compliant joints or parallel mechanisms having four springs. Sets of necessary and sufficient conditions for mechanisms in this class to passively realize an elastic behavior are presented. The conditions are interpreted in terms of mechanism geometry. Similar conditions for nonredundant cases are highly restrictive. Redundancy yields a significantly larger space of realizable elastic behaviors. Construction-based synthesis procedures for planar elastic behaviors are also developed. In each, the selection of the mechanism geometry and the selection of joint/spring stiffnesses are completely decoupled. The procedures require that the geometry of each elastic component be selected from a restricted space of acceptable candidates.

Commentary by Dr. Valentin Fuster
J. Mechanisms Robotics. 2018;10(4):041005-041005-10. doi:10.1115/1.4039773.

Miniature robots have many applications ranging from military surveillance to search and rescue in disaster areas. Nevertheless, the fabrication of such robots has traditionally been labor-intensive and time-consuming. This paper proposes to directly leverage multimaterial 3D printing (MM3P) to fabricate centimeter-scale robots by utilizing soft materials to create not only soft joints to replace revolute joints but also soft links to replace rigid links. We demonstrate the capability of MM3P by creating a miniature, four-legged walking robot. Moreover, we leverage a three-spring rotational-prismatic-rotational (RPR) model to approximate the motion of soft joints or links, which is further utilized to numerically predict the motion of the leg mechanism with multiple soft joints and links. The accuracy of the proposed numerical method is validated with experimental results, and outperforms the results from using a psuedorigid-body (PRB) 1R model to approximate the motion of soft joints/links of the same mechanism. Meanwhile, a functional walking robot actuated by a single DC motor is demonstrated with a locomotion speed of 5.7 cm/s. We envision that the concept of employing both soft joints and links will inspire the design and realization of novel miniature mechanisms for a wide range of applications including robotics, deployable structures, or mechanical metamaterials. The proposed numerical method can also be readily applied to analyze other mechanisms with soft joints and links.

Commentary by Dr. Valentin Fuster
J. Mechanisms Robotics. 2018;10(4):041006-041006-12. doi:10.1115/1.4039771.

Multi-objective optimization of a typical parallel tracking mechanism considering parameter uncertainty is carried out in this paper. Both dimensional and sectional parameters are regarded as design variables. Workspace, kinematic, stiffness, and dynamic performances are simultaneously considered in formulating optimal objectives and constraint conditions. Considering manufacturing and assembling errors, parameter uncertainty is modeled and evaluated to minimize their effects on the optimized performances. Analytical models between objectives and design variables are established to improve the efficiency of optimization while its accuracy is assured. The study of parameter uncertainty and analytical mapping model is incorporated in the optimization of the parallel tracking mechanism. With the aid of particle swarm algorithm, a cluster of solutions, called Pareto frontier, are obtained. By proposing an index, a cooperative equilibrium point representing the balance among objectives is selected and the optimized parameters are determined. The present study is expected to help designers build optimized parallel tracking mechanism in an effective and efficient manner.

Commentary by Dr. Valentin Fuster
J. Mechanisms Robotics. 2018;10(4):041007-041007-10. doi:10.1115/1.4039854.

This paper addresses the issue of controller complexity for multirotor aerial manipulator (AM) implementation by utilizing a special class of fully actuated hexrotor within the framework of a firmware, which allows standard multirotor actuation modes. Using this platform, manipulator and vehicle dynamics are decoupled, making the airframe inherently more robust than standard multirotor for trajectory tracking in AM applications. Furthermore, its unique design allows for the implementation of modular control strategies. The proposed rotor orientation model makes it possible to decouple the dynamics, allowing full analytical development of the optimal solution. A methodology for analysis, control allocation, and design of this special class of hexrotor is presented, and the implementation of a custom flight stack is demonstrated using a hexrotor prototype in closed-loop flight testing. The flight stack developed is compliant with the open-source ArduPilot Mega (APM) firmware, allowing it to take advantage of all generic multirotor control algorithms. Experimental results are presented to demonstrate feasibility of the system.

Commentary by Dr. Valentin Fuster
J. Mechanisms Robotics. 2018;10(4):041008-041008-10. doi:10.1115/1.4040132.

The design of an innovative spherical mechanism with three degrees-of-freedom (DOFs) for a shoulder joint exoskeleton is presented in this paper. The spherical mechanism is designed with a double parallelogram linkage (DPL), which connects two revolute joints to implement the motion as a spherical joint, while maintaining the remote center (RC) of rotation. The design has several new features compared to the current state-of-the-art: (1) a relative large range of motion (RoM) free of singularity, (2) high overall stiffness, (3) lightweight, and (4) compact, which make it suitable for assistive exoskeletons. In this paper, the kinematics and singularities are analyzed for the spherical mechanism and DPL. Dimensional analysis is carried out to find the design with maximum RoM. The new shoulder joint is finally designed, constructed, and integrated in a four degree-of-freedom wearable upper-body exoskeleton. A finite element analysis (FEA) study is used to assess the structural stiffness of the proposed design in comparison to the conventional 3R mechanism.

Commentary by Dr. Valentin Fuster
J. Mechanisms Robotics. 2018;10(4):041010-041010-7. doi:10.1115/1.4040270.

Commercial springs have linear characteristics. Nevertheless, in some cases, nonlinear behavior (e.g., nonlinear torque) is desired. To handle that, a cam-spring mechanism with a specified cam profile was proposed in our previous work. In this paper, to further study the cam profile generation, a new convenient design method is proposed. First, the model of cam-spring mechanism considering the friction force is analyzed. Based on this model, sorts of derivation processes are conducted for obtaining the expression of spring torque. When the friction coefficient is zero, the analytical solution of the equation (spring deformation) is derived. However, in practice, where the friction coefficient is not zero, an analytical solution is not available. Therefore, a numerical solution is sought. Then, with the obtained spring deformation, the cam profile and pitch curve are generated. Results of an experiment conducted to verify the new method show that the cam profile generated by the direct derivation method can precisely mimic the desired torque characteristics. In addition, the hysteresis induced by the friction force in the cam-spring mechanism is also studied. By increasing the spring stiffness, spring free length, and the cam eccentricity, the hysteresis in the cam-spring mechanism can be decreased.

Topics: Torque , Springs , Friction
Commentary by Dr. Valentin Fuster
J. Mechanisms Robotics. 2018;10(4):041011-041011-11. doi:10.1115/1.4040028.

Driving system parameters optimization, especially the optimal selection of specifications of motor and gearbox, is very important for improving high-speed parallel robots' performance. A very challenging issue is parallel robots' performance evaluation that should be able to illustrate robots' performance accurately and guide driving system parameters optimization effectively. However, this issue is complicated by parallel robots' anisotropic translational and rotational dynamic performance, and the multiparameters of motors and gearboxes. In this paper, by separating the influence of translational and rotational degrees-of-freedom (DOFs) on robots' performance, a new dynamic performance index is proposed to reflect the driving torque in instantaneous acceleration. Then, the influence of driving system's multiparameters on robots' driving torque in instantaneous acceleration and cycle time in continuous motion is investigated. Based on the investigation, an inertia matching index is further derived which is more suitable for minimizing the driving torque of parallel robots with translational and rotational DOFs. A comprehensive parameterized performance atlas is finally established. Based on this atlas, the performance of a high-speed parallel robot developed in this paper can be clearly evaluated, and the optimal combination of motors and gearboxes can be quickly selected to ensure low driving torque and high pick-and-place frequency.

Commentary by Dr. Valentin Fuster
J. Mechanisms Robotics. 2018;10(4):041012-041012-10. doi:10.1115/1.4040133.

This paper introduces the three-dimensional (3D) dual Kennedy theorem in statics, and demonstrates its application to characterize the singular configuration of the 6/6 Stewart Platform (6/6 SP). The proposed characterization is articulated as a simple geometric relation that is easy to apply and check. We find two lines that cross four of the six legs of the platform. Each one of these two lines has a parallel line that crosses the remaining two legs. Each pair of parallel lines defines a plane. The 6/6 SP is in a singular position if the intersection of these two planes is perpendicular to the common normal of the remaining two legs. The method developed for the singular characterization is also used for the analysis of the mobility and forces of the SP. Finally, the proposed method is compared to some known singular configurations, such as Hunt's and Fichter's singular configurations and the 3/6 Stewart Platform (3/6 SP) singularity. The relation between the reported characterizations of the 6/6 SP and other reported works is highlighted. Moreover, it is shown that the known 3/6 SP characterization is a special case of the results reported in the paper. Finally, a characterization of a platform that does not appear in the literature, 5/6 SP, is developed based on the new approach to demonstrate its utility.

Commentary by Dr. Valentin Fuster
J. Mechanisms Robotics. 2018;10(4):041013-041013-12. doi:10.1115/1.4040356.

Capturing noncooperative targets in space has great prospects for aerospace application. In this work, the knuckle unit of a large-scale reconfigurable space multifingered hand (LSRSMFH) for multitask requirements is studied. A plurality of knuckle units is connected in series to form a finger of the LSRSMFH. First, the lockable spherical (lS) joint, a new metamorphic joint that can function as a Hooke (lS1) or spherical (lS2) joint and is driven by shape memory alloy (SMA) material, is proposed. Based on the lS joint, this paper presents a new metamorphic parallel mechanism (MPM) (i.e., 3RRlS MPM), which has four configurations, namely, 3RRlS1, 3RRlS2, 2RRlS1-RRlS2, and 2RRlS2-RRlS1 configuration. The degree-of-freedom (DOF), overconstraint, and parasitic motion of the 3RRlS MPM are analyzed using screw theory, of which the DOF can be changed from 1 to 3. The 3RRlS1 configuration has a virtual constraint, and the 3RRlS2 configuration has parasitic motions. The results indicate that the mechanism motion screws can qualitatively represent the mechanism parasitic motions, and it is verified by deriving the kinematic equation of the 3RRlS MPM based on its spatial geometric conditions, the workspace of the 3RRlS MPM is further solved. The kinematic analysis indicates that the 3RRlS MPM can realize the folding, capturing, and reconfiguring conditions of the LSRSMFH.

Commentary by Dr. Valentin Fuster

Technical Brief

J. Mechanisms Robotics. 2018;10(4):041009-041009-8. doi:10.1115/1.4039591.

Passive compliance control is an approach for controlling the contact forces between a robotic manipulator and a stiff environment. This paper considers passive compliance control using redundant serial manipulators with real-time adjustable joint stiffness. Such manipulators can control the elastic behavior of the end-effector by adjusting the manipulator configuration and by adjusting the intrinsic joint stiffness. The end-effector's time-varying elastic behavior is a beneficial quality for constrained manipulation tasks such as opening doors, turning cranks, and assembling parts. The challenge in passive compliance control is finding suitable joint commands for producing the desired time-varying end-effector position and compliance (task manipulation plan). This problem is addressed by extending the redundant inverse kinematics (RIK) problem to include compliance. This paper presents an effective method for simultaneously attaining the desired end-effector position and end-effector elastic behavior by tracking a desired variation in both the position and the compliance. The set of suitable joint commands is not unique; the method resolves the redundancy by minimizing the actuator velocity norm. The method also compensates for joint deflection due to known external loads, e.g., gravity.

Commentary by Dr. Valentin Fuster
J. Mechanisms Robotics. 2018;10(4):044502-044502-9. doi:10.1115/1.4039972.

This study presents a topology optimization method to synthesize an innovative compliant finger for grasping objects with size and shape variations. The design domain of the compliant finger is a trapezoidal area with one input and two output ports. The topology optimized finger design is prototyped by three-dimensional (3D) printing using flexible filament, and be used in the developed gripper module, which consists of one actuator and two identical compliant fingers. Both fingers are actuated by one displacement input, and can grip objects through elastic deformation. The gripper module is mounted on an industrial robot to pick and place a variety of objects to demonstrate the effectiveness of the proposed design. The results show that the developed compliant finger can be used to handle vulnerable objects without causing damage to the surface of grasped items. The proposed compliant finger is a monolithic and low-cost design, which can be used to resolve the challenge issue for robotic automation of irregular and vulnerable objects.

Commentary by Dr. Valentin Fuster
J. Mechanisms Robotics. 2018;10(4):044503-044503-7. doi:10.1115/1.4039973.

The cost of therapy is one of the most significant barriers to recovery after neurological injury. Robotic gait trainers move the legs through repetitive, natural motions imitating gait. Recent meta-analyses conclude that such training improves walking function in neurologically impaired individuals. While robotic gait trainers promise to reduce the physical burden on therapists and allow greater patient throughput, they are prohibitively costly. Our novel approach is to design a new single degree-of-freedom (DoF) robotic trainer that maintains the key advantages of the expensive trainers but with a simplified design to reduce cost. Our primary design challenge is translating the motion of a single actuator to an array of natural gait trajectories. We address this with an eight-link Jansen mechanism that matches a generalized gait trajectory. We then optimize the mechanism to match different trajectories through link length adjustment based on nine different gait patterns obtained from gait database of 113 healthy individuals. To physically validate the range in gait patterns produced by the simulation, we tested kinematic accuracy on a motorized wooden proof-of-concept of the gait trainer. The simulation and experimental results suggested that an adjustment of two links can reasonably fit a wide range of gait patterns under typical within-subject variance. We conclude that this design could provide the basis for a low-cost, patient-based electromechanical gait trainer for neurorecovery.

Commentary by Dr. Valentin Fuster
J. Mechanisms Robotics. 2018;10(4):044504-044504-7. doi:10.1115/1.4040027.

This paper applies kinematic synthesis theory to obtain the dimensions of a constrained spatial serial chain for a valve mechanism that cleans and closes a soil conditioning port in a tunnel boring machine. The goal is a smooth movement that rotates a cylindrical array of studs into position and then translates it forward to clean and close the port. The movement of the valve is defined by six positions of the revolute-prismatic-revolute (RPR) serial chain. These six positions are used to compute the dimensions of the two spherical spherical (SS) dyads that constrain the RPR chain to obtain a one degree-of-freedom spatial mechanism. An example design of this valve mechanism is provided in detail.

Topics: Chain , Design , Valves , Soil , Linkages , Rotation
Commentary by Dr. Valentin Fuster
J. Mechanisms Robotics. 2018;10(4):044505-044505-8. doi:10.1115/1.4040354.

The research and development of powered exoskeletons is expected to support the walking of paraplegic patients. At the current stage, exoskeletons do not allow patients to voluntarily control their gait, nor do they provide sensory feedback to compensate for the loss of lower-body sensation. This paper proposes a wearable walking control interface to achieve voluntary gait control, and an electrical stimulation method to inform the patients about their foot position for voluntary gait control. In this study, a walking robot that simulated a paraplegic patient wearing an exoskeleton was used to investigate the performance of the proposed interface and stimulation method. We confirmed that, by using the interface, the subjects were able to control the robot gait for a distance of 3 m. Moreover, the accuracy of the electrical stimulation feedback was confirmed to approximate the visual feedback achieved through the human eyes. The experimental results revealed that the proposed interface and electrical stimulation feedback could be applied to a walking support system for patients with complete paraplegia.

Commentary by Dr. Valentin Fuster
J. Mechanisms Robotics. 2018;10(4):044506-044506-7. doi:10.1115/1.4040438.

This paper presents a novel underactuated tetrahedral mobile robot with 12 degrees-of-freedom (DOFs). The robot contains four vertices and six URU chains (where U represents a universal joint and R represents an actuated revolute joint). The tetrahedral structure makes the robot have continuous mobile ability at any posture. The mobility analysis has been made and demonstrates the feasibility of underactuated which demands fewer devices and low costs. A kind of rolling locomotion of the robot is proposed, and the feasibility of the locomotion is proved by the kinematic and locomotion analysis based on an equivalent planar mechanism. Finally, a prototype is manufactured and a series of experiments are performed to verify the mobile capability of the robot.

Commentary by Dr. Valentin Fuster

Design Innovation Paper

J. Mechanisms Robotics. 2018;10(4):045001-045001-8. doi:10.1115/1.4039693.

This paper presents a new parallel robot with an integrated gripper. The grasping capability of the robot is obtained by a foldable platform that can be fully controlled by actuators located on the base of the seven degrees-of-freedom (DoF) parallel structure. This mechanism combines three key specificities in robotics which are compactness, rigidity, and high blocking forces. The paper presents the new structure, its kinematic modeling, and an analysis of its workspace and grasping force capabilities. In addition, a prototype is presented and tested in manipulation and insertion operations, which validates the proposed concept.

Commentary by Dr. Valentin Fuster
J. Mechanisms Robotics. 2018;10(4):045002-045002-5. doi:10.1115/1.4040355.

This paper focuses on designing, kinematically and dynamically characterizing a novel deformable quad-rotor that is based on the scissor-like foldable mechanisms. Inspired by morphological adaptation of birds during flight, the quad-rotor allows that its volume can be varied to dynamically adapt complex environments and spaces. The advantages of such mechanism are twofold following the scenario, that is, the quad-rotor can stably fly with a big volume/size and can also switch to a smaller volume for a swift flight in response to the changes of the environments and spaces. It therefore is capable of efficiently avoiding obstacles, stably passing through narrow spaces, and resisting certain-extent wind effects. To generate the controllable deformation, the actuated angulated scissor elements in the structure play an important role. In this paper, the scissor element design, its actuation mechanism, and volume deformation of the new quad-rotor are presented in detail. Simulations and experiments are then conducted to validate the controlled deformation as well as to investigate the deformation elicited effects to the activated quad-rotor airframe and its aerodynamics. The results demonstrate the effectiveness of the proposed deformable quad-rotor, and prove that it enables excellent volume deformation performance, good flight adaptation, as well as minimal aerodynamics influences during deforming.

Commentary by Dr. Valentin Fuster

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In