Newest Issue

Research Papers

J. Mechanisms Robotics. 2018;10(3):031001-031001-9. doi:10.1115/1.4038218.

The kinematic chains that generate the planar motion group in which the prismatic-joint direction is always perpendicular to the revolute-joint axis have shown their effectiveness in type synthesis and mechanism analysis in parallel mechanisms. This paper extends the standard prismatic–revolute–prismatic (PRP) kinematic chain generating the planar motion group to a relatively generic case, in which one of the prismatic joint-directions is not necessarily perpendicular to the revolute-joint axis, leading to the discovery of a pseudo-helical motion with a variable pitch in a kinematic chain. The displacement of such a PRP chain generates a submanifold of the Schoenflies motion subgroup. This paper investigates for the first time this type of motion that is the variable-pitched pseudo-planar motion described by the above submanifold. Following the extraction of a helical motion from this skewed PRP kinematic chain, this paper investigates the bifurcated motion in a 3-prismatic–universal–prismatic (PUP) parallel mechanism by changing the active geometrical constraint in its configuration space. The method used in this contribution simplifies the analysis of such a parallel mechanism without resorting to an in-depth geometrical analysis and screw theory. Further, a parallel platform which can generate this skewed PRP type of motion is presented. An experimental test setup is based on a three-dimensional (3D) printed prototype of the 3-PUP parallel mechanism to detect the variable-pitched translation of the helical motion.

Commentary by Dr. Valentin Fuster
J. Mechanisms Robotics. 2018;10(3):031002-031002-12. doi:10.1115/1.4039002.

This paper for the first time reveals a set of special plane-symmetric Bricard linkages with various branches of reconfiguration by means of intersection of two generating toroids, and presents a complete theory of the branch reconfiguration of the Bricard plane-symmetric linkages. An analysis of the intersection of these two toroids reveals the presence of coincident conical singularities, which lead to design of the plane-symmetric linkages that evolve to spherical 4R linkages. By examining the tangents to the curves of intersection at the conical singularities, it is found that the linkage can be reconfigured between the two possible branches of spherical 4R motion without disassembling it and without requiring the usual special configuration connecting the branches. The study of tangent intersections between concentric singular toroids also reveals the presence of isolated points in the intersection, which suggests that some linkages satisfying the Bricard plane-symmetry conditions are actually structures with zero finite degrees-of-freedom (DOF) but with higher instantaneous mobility. This paper is the second part of a paper published in parallel by the authors in which the method is applied to the line-symmetric case.

Topics: Linkages
Commentary by Dr. Valentin Fuster

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In