0
Research Papers

Kinematics and Force Analysis of Flexible Screw Mechanism for a Worm Robot

[+] Author and Article Information
Yanheng Zhang

Automation School,
Beijing University of Posts and
Telecommunications,
Beijing, China No 10,
Xitucheng Road, Haidian District,
Beijing 100876, China
e-mail: zyh620@bupt.edu.cn

Jian Xu

Automation School,
Beijing University of Posts and
Telecommunications,
Beijing, China No 10,
Xitucheng Road, Haidian District,
Beijing 100876, China
e-mail: jianxumail@163.com

Wei Wang

School of Mechanical Engineer and Automation,
Beihang University,
No. 37 Xueyuan Road,
Haidian District,
Beijing 100083, China
e-mail: jwwx@163.com

1Corresponding author.

Contributed by the Mechanisms and Robotics Committee of ASME for publication in the JOURNAL OF MECHANISMS AND ROBOTICS. Manuscript received November 6, 2017; final manuscript received August 13, 2018; published online September 17, 2018. Assoc. Editor: Shaoping Bai.

J. Mechanisms Robotics 10(6), 061005 (Sep 17, 2018) (7 pages) Paper No: JMR-17-1383; doi: 10.1115/1.4041256 History: Received November 06, 2017; Revised August 13, 2018

This paper presents a new type of flexible screw mechanism (FSM), which is composed of a nut, flexible axle, and roller. It can be used in a worm robot to achieve flexible peristaltic motion, as well as curvilinear motion and deformation. This type of FSM uses a roller to decrease the friction. We investigated the transmission principle and the kinematic characteristics of this FSM, established the model of the velocity, acceleration of the roller, characterized the feed motion characteristics of the flexible shaft, and achieved an analytical solution of the flexible shaft's velocity. Furthermore, by considering the position of the pure rolling section of the roller, the spin slide model is proposed based on Hertz theory. To investigate the friction loss between the roller and the flexible axle, we established a friction work model of the entire FSM system. Finally, the motion characteristics of the FSM are evaluated through experiments.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Rus, D. , and Tolley, M. T. , 2015, “ Design, Fabrication and Control of Soft Robots,” Nature, 521(7553), pp. 467–475. [CrossRef] [PubMed]
Kim, S. , Laschi, C. , and Trimmer, B. , 2013, “ Soft Robotics: A Bioinspired Evolution in Robotics,” Trends Biotechnol., 31(5), pp. 287–294. [CrossRef] [PubMed]
Manti, M. , Hassan, T. , Passetti, G. , D'Elia, N. , Laschi, C. , and Cianchetti, M. , 2015, “ A Bioinspired Soft Robotic Gripper for Adaptable and Effective Grasping,” Soft Rob., 2(3), pp. 107–116. [CrossRef]
Trivedi, D. , and Rahn, C. D. , 2014, “ Model-Based Shape Estimation for Soft Robotic Manipulators: The Planar Case,” ASME J. Mech. Rob., 6(2), p. 021005. [CrossRef]
Lin, H. T. , Leisk, G. G. , and Trimmer, B. , 2011, “ GoQBot: A Caterpillar-Inspired Soft-Bodied Rolling Robot,” Bioinspiration Biomimetics, 6(2), p. 026007. [CrossRef] [PubMed]
Tolley, M. T. , Shepherd, R. F. , Mosadegh, B. , Galloway, K. C. , Wehner, M. , Karpelson, M. , and Whitesides, G. M. , 2014, “ A Resilient, Untethered Soft Robot,” Soft Rob., 1(3), pp. 213–223. [CrossRef]
Manwell, T. , Vitek, T. , Ranzani, T. , Menciassi, A. , Althoefer, K. , and Liu, H. , 2014, “ Elastic Mesh Braided Worm Robot for Locomotive Endoscopy,” Conf. Proc. IEEE Eng. Med. Biol. Soc., 2014, pp. 848--851.
Horchler, A. D. , Kandhari, A. , Daltorio, K. A. , Moses, K. C. , Andersen, K. B. , Bunnelle, H. , and Quinn, R. D. , 2015, “ Worm-Like Robotic Locomotion With a Compliant Modular Mesh,” Conference on Biomimetic and Biohybrid Systems, Barcelona, Spain, pp. 26–37.
Seok, S. , Onal, C. D. , Wood, R. , Rus, D. , and Kim, S. , 2010, “ Peristaltic Locomotion With Antagonistic Actuators in Soft Robotics,” IEEE International Conference on Robotics and Automation, Anchorage, AK, May 3–7, pp. 1228–1233.
Winstone, B. , Pipe, T. , Melhuish, C. , Callaway, M. , Etoundi, A. C. , and Dogramadzi, S. , 2016, “ Single Motor Actuated Peristaltic Wave Generator for a Soft Bodied Worm Robot,” IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Singapore, June 26–29, pp. 449–456.
Saga, N. , and Nakamura, T. , 2004, “ Development of a Peristaltic Crawling Robot Using Magnetic Fluid on the Basis of the Locomotion Mechanism of the Earthworm,” Smart Mater. Struct., 13(3), pp. 566–569. [CrossRef]
Onal, C. D. , Wood, R. J. , and Rus, D. , 2013, “ An Origami-Inspired Approach to Worm Robots,” IEEE/ASME Trans. Mechatronics, 18(2), pp. 430–438. [CrossRef]
Zhang, K. , Qiu, C. , and Dai, J. S. , 2015, “ Helical Kirigami-Enabled Centimeter-Scale Worm Robot With Shape-Memory-Alloy Linear Actuators,” ASME J. Mech. Rob., 7(2), p. 021014. [CrossRef]
Mangan, E. V. , Kingsley, D. A. , Quinn, R. D. , and Chiel, H. J. , 2002, “ Development of a Peristaltic Endoscope,” IEEE International Conference on Robotics and Automation (ICRA), Washington, DC, May 11–15, pp. 347–352.
Bertetto, A. M. , and Ruggiu, M. , 2001, “ In-Pipe Inch-Worm Pneumatic Flexible Robot,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Como, Italy, July 8–12, pp. 1226–1234.
Nakamura, T. , Hidaka, Y. , Yokojima, M. , and Adachi, K. , 2012, “ Development of Peristaltic Crawling Robot With Artificial Rubber Muscles Attached to Large Intestine Endoscope,” Adv. Rob., 26(10), pp. 1161–1182. [CrossRef]
Seok, S. , Onal, C. D. , Cho, K. J. , Wood, R. J. , Rus, D. , and Kim, S. , 2013, “ Meshworm: A Peristaltic Soft Robot With Antagonistic Nickel Titanium Coil Actuators,” IEEE/ASME Trans. Mechatronics, 18(5), pp. 1485–1497. [CrossRef]
Daltorio, K. A. , Boxerbaum, A. S. , Horchler, A. D. , Shaw, K. M. , Chiel, H. J. , and Quinn, R. D. , 2013, “ Efficient Worm-Like Locomotion: Slip and Control of Soft-Bodied Peristaltic Robots,” Bioinspiration Biomimetics, 8(3), p. 035003. [CrossRef] [PubMed]
Quillin, K. J. , 1999, “ Kinematic Scaling of Locomotion by Hydrostatic Animals: Ontogeny of Peristaltic Crawling by the Earthworm Lumbricus Terrestris,” J. Exp. Biol., 202(6), pp. 661–674. http://jeb.biologists.org/content/202/6/661.short [PubMed]
Zhang, Y. H. , Zhang, M. W. , Feng, W. L. , and Sun, H. X. , 2012, “ Optimization Design and Trafficability Analysis of a Flexible Squirm Pipe Robot,” Adv. Mater. Res., 479, pp. 2365–2371. [CrossRef]
Nian, S. C. , Zhang, Y. H. , Sun, H. X. , Zhang, M. W. , and Jia, Q. X. , 2013, “ Force Analysis of a Flexible Squirm Pipe Robot,” J. Beijing Univ. Posts Telecommun., 36(1), pp. 63–66.
Zhang, Y. H. , Feng, W. L. , Nian, S. C. , and Sun, H. X. , 2013, “ Traction Force and Flexible Shaft Stability Analysis of Flexible Squirming Pipe Robot,” Robot, 35(4), pp. 477–483. [CrossRef]
Nian, S. C. , Zhang, Y. H. , Sun, H. X. , and Chen, W. , 2014, “ Study on Driving Capability of Flexible Peristaltic Pipeline Robot in Elbow,” J. Huazhong Univ. Sci. Technol. (Natural Sci. Ed.), 42(8), pp. 54–57.
Auregan, G. , Fridrici, V. , Kapsa, P. , and Rodrigues, F. , 2015, “ Experimental Simulation of Rolling–Sliding Contact for Application to Planetary Roller Screw Mechanism,” Wear, 332–333, pp. 1176–1184. [CrossRef]
Mahdi, D. , Riches, A. , Gester, M. , Yeomans, J. , and Smith, P. , 2015, “ Rolling and Sliding: Separation of Adhesion and Deformation Friction and Their Relative Contribution to Total Friction,” Tribol. Int., 89, pp. 128–134. [CrossRef]
Kogut, L. , and Etsion, I. , 2004, “ A Static Friction Model for Elastic-Plastic Contacting Rough Surfaces,” ASME J. Tribol., 126(1), pp. 34–40. [CrossRef]
Qiu, H. , Hills, D. A. , Nowell, D. , and Dini, D. , 2008, “ Skew Sliding of an Elastic Cylinder: An Investigation of Convection in Contact,” Int. J. Mech. Sci., 50(2), pp. 293–298. [CrossRef]
Sasaki, T. , Mori, H. , and Okino, N. , 1962, “ Fluid Lubrication Theory of Rolling Bearing—Part I,” ASME J. Fluids Eng., 84(1), pp. 166–175.
Sasaki, T. , Mori, H. , and Okino, N. , 1962, “ Fluid Lubrication Theory of Rolling Bearing—Part II,” ASME J. Fluids Eng., 84(1), pp. 166–175.

Figures

Grahic Jump Location
Fig. 1

The flexible squirm pipe robot

Grahic Jump Location
Fig. 2

The newly designed FSM

Grahic Jump Location
Fig. 3

The roller spiral model

Grahic Jump Location
Fig. 4

Cartesian coordinate system

Grahic Jump Location
Fig. 6

Screw pitch in different parts

Grahic Jump Location
Fig. 7

Numerical simulation of vN

Grahic Jump Location
Fig. 8

The influence of load on vN under different unit axial stiffnesses

Grahic Jump Location
Fig. 9

Force analytical graph of the roller

Grahic Jump Location
Fig. 10

Numerical simulation of x

Grahic Jump Location
Fig. 11

Friction force distribution and the displacement on the contact line

Grahic Jump Location
Fig. 12

Roller with spherical end

Grahic Jump Location
Fig. 13

Experimental platform for FSM

Grahic Jump Location
Fig. 14

The FSM with encoder installed on the roller

Grahic Jump Location
Fig. 15

Roller angular velocity under 0.5 kg load

Grahic Jump Location
Fig. 16

Roller angular velocity under 2.5 kg load

Grahic Jump Location
Fig. 17

Roller angular velocity under 5.0 kg load

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In