Technical Brief

Topology Optimization and Prototype of a Three-Dimensional Printed Compliant Finger for Grasping Vulnerable Objects With Size and Shape Variations

[+] Author and Article Information
Chih-Hsing Liu

Department of Mechanical Engineering,
National Cheng Kung University,
Tainan 701, Taiwan
e-mail: chliu@mail.ncku.edu.tw

Chen-Hua Chiu

Department of Mechanical Engineering,
National Cheng Kung University,
Tainan 701, Taiwan
e-mail: zas988777@gmail.com

Ta-Lun Chen

Department of Mechanical Engineering,
National Cheng Kung University,
Tainan 701, Taiwan
e-mail: luciferluxn@gmail.com

Tzu-Yang Pai

Department of Mechanical Engineering,
National Cheng Kung University,
Tainan 701, Taiwan
e-mail: a19936161@gmail.com

Mao-Cheng Hsu

Department of Mechanical Engineering,
National Cheng Kung University,
Tainan 701, Taiwan
e-mail: qwe.566@gmail.com

Yang Chen

Department of Mechanical Engineering,
National Cheng Kung University,
Tainan 701, Taiwan
e-mail: balrog705@gmail.com

Contributed by the Mechanisms and Robotics Committee of ASME for publication in the JOURNAL OF MECHANISMS AND ROBOTICS. Manuscript received July 29, 2017; final manuscript received April 1, 2018; published online May 31, 2018. Assoc. Editor: Hai-Jun Su.

J. Mechanisms Robotics 10(4), 044502 (May 31, 2018) (9 pages) Paper No: JMR-17-1231; doi: 10.1115/1.4039972 History: Received July 29, 2017; Revised April 01, 2018

This study presents a topology optimization method to synthesize an innovative compliant finger for grasping objects with size and shape variations. The design domain of the compliant finger is a trapezoidal area with one input and two output ports. The topology optimized finger design is prototyped by three-dimensional (3D) printing using flexible filament, and be used in the developed gripper module, which consists of one actuator and two identical compliant fingers. Both fingers are actuated by one displacement input, and can grip objects through elastic deformation. The gripper module is mounted on an industrial robot to pick and place a variety of objects to demonstrate the effectiveness of the proposed design. The results show that the developed compliant finger can be used to handle vulnerable objects without causing damage to the surface of grasped items. The proposed compliant finger is a monolithic and low-cost design, which can be used to resolve the challenge issue for robotic automation of irregular and vulnerable objects.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Hassani, B. , and Hinton, E. , 1998, “ A Review of Homogenization and Topology Optimization—III: Topology Optimization Using Optimality Criteria,” Comput. Struct., 69(6), pp. 739–756. [CrossRef]
Eschenauer, H. A. , and Olhoff, N. , 2001, “ Topology Optimization of Continuum Structures: A Review,” ASME Appl. Mech. Rev., 54(4), pp. 331–390. [CrossRef]
Rozvany, G. I. N. , 2009, “ A Critical Review of Established Methods of Structural Topology Optimization,” Struct. Multidiscip. Optim., 37(3), pp. 217–237. [CrossRef]
Huang, X. , and Xie, Y. M. , 2010, “ A Further Review of ESO Type Methods for Topology Optimization,” Struct. Multidiscip. Optim., 41(5), pp. 671–683. [CrossRef]
Sigmund, O. , and Maute, K. , 2013, “ Topology Optimization Approaches,” Struct. Multidiscip. Optim., 48(6), pp. 1031–1055. [CrossRef]
van Dijk, N. P. , Maute, K. , Langelaar, M. , and van Keulen, F. , 2013, “ Level-Set Methods for Structural Topology Optimization: A Review,” Struct. Multidiscip. Optim., 48(3), pp. 437–472. [CrossRef]
Deaton, J. D. , and Grandhi, R. V. , 2014, “ A Survey of Structural and Multidisciplinary Continuum Topology Optimization: Post 2000,” Struct. Multidiscip. Optim., 49(1), pp. 1–38. [CrossRef]
Sigmund, O. , and Petersson, J. , 1998, “ Numerical Instabilities in Topology Optimization: A Survey on Procedures Dealing With Checkerboards, Mesh-Dependencies and Local Minima,” Struct. Optim., 16(1), pp. 68–75. [CrossRef]
Zhou, M. , Shyy, Y. K. , and Thomas, H. L. , 2001, “ Checkerboard and Minimum Member Size Control in Topology Optimization,” Struct. Multidiscip. Optim., 21(2), pp. 152–158. [CrossRef]
Jang, G.-W. , Jeong, J. H. , Kim, Y. Y. , Sheen, D. , Park, C. , and Kim, M.-N. , 2003, “ Checkerboard-Free Topology Optimization Using Non-Conforming Finite Elements,” Int. J. Numer. Methods Eng., 57(12), pp. 1717–1735. [CrossRef]
Huang, X. , and Xie, Y. M. , 2007, “ Convergent and Mesh-Independent Solutions for the Bi-Directional Evolutionary Structural Optimization Method,” Finite Elem. Anal. Des., 43(14), pp. 1039–1049. [CrossRef]
Sigmund, O. , 2007, “ Morphology-Based Black and White Filters for Topology Optimization,” Struct. Multidiscip. Optim., 33(4–5), pp. 401–424. [CrossRef]
Sigmund, O. , 1997, “ On the Design of Compliant Mechanisms Using Topology Optimization,” Mech. Struct. Mach., 25(4), pp. 493–524. [CrossRef]
Pedersen, C. B. W. , Buhl, T. , and Sigmund, O. , 2001, “ Topology Synthesis of Large-Displacement Compliant Mechanisms,” Int. J. Numer. Methods Eng., 50(12), pp. 2683–2705. [CrossRef]
Rahmatalla, S. , and Swan, C. C. , 2005, “ Sparse Monolithic Compliant Mechanisms Using Continuum Structural Topology Optimization,” Int. J. Numer. Methods Eng., 62(12), pp. 1579–1605. [CrossRef]
Deepak, S. R. , Dinesh, M. , Sahu, D. K. , and Ananthasuresh, G. K. , 2008, “ A Comparative Study of the Formulations and Benchmark Problems for the Topology Optimization of Compliant Mechanisms,” ASME J. Mech. Rob., 1(1), p. 011003. [CrossRef]
Wang, M. Y. , 2009, “ Mechanical and Geometric Advantages in Compliant Mechanism Optimization,” Front. Mech. Eng. China, 4(3), pp. 229–241. [CrossRef]
Zhou, H. , 2010, “ Topology Optimization of Compliant Mechanisms Using Hybrid Discretization Model,” ASME J. Mech. Des., 132(11), p. 111003. [CrossRef]
Zhou, H. , and Killekar, P. P. , 2011, “ The Modified Quadrilateral Discretization Model for the Topology Optimization of Compliant Mechanisms,” ASME J. Mech. Des., 133(11), p. 111007. [CrossRef]
Alonso, C. , Querin, O. M. , and Ansola, R. , 2013, “ A Sequential Element Rejection and Admission (SERA) Method for Compliant Mechanisms Design,” Struct. Multidiscip. Optim., 47(6), pp. 795–807. [CrossRef]
Alonso, C. , Ansola, R. , and Querin, O. M. , 2014, “ Topology Synthesis of Multi-Material Compliant Mechanisms With a Sequential Element Rejection and Admission Method,” Finite Elem. Anal. Des., 85, pp. 11–19. [CrossRef]
Zhu, B. , Zhang, X. , and Fatikow, S. , 2014, “ Level Set-Based Topology Optimization of Hinge-Free Compliant Mechanisms Using a Two-Step Elastic Modeling Method,” ASME J. Mech. Des., 136(3), p. 031007. [CrossRef]
Cao, L. , Dolovich, A. T. , and Zhang, W. , 2015, “ Hybrid Compliant Mechanism Design Using a Mixed Mesh of Flexure Hinge Elements and Beam Elements Through Topology Optimization,” ASME J. Mech. Des., 137(9), p. 092303. [CrossRef]
Liu, C.-H. , and Huang, G.-F. , 2016, “ A Topology Optimization Method With Constant Volume Fraction During Iterations for Design of Compliant Mechanisms,” ASME J. Mech. Rob., 8(4), p. 044505. [CrossRef]
Liu, C.-H. , Huang, G.-F. , and Chen, T.-L. , 2017, “ An Evolutionary Soft-Add Topology Optimization Method for Synthesis of Compliant Mechanisms With Maximum Output Displacement,” ASME J. Mech. Rob., 9(5), p. 054502. [CrossRef]
Krishnakumar, A. , and Suresh, K. , 2015, “ Hinge-Free Compliant Mechanism Design Via the Topological Level-Set,” ASME J. Mech. Des., 137(3), p. 031406. [CrossRef]
Pedersen, C. B. W. , Fleck, N. A. , and Ananthasuresh, G. K. , 2006, “ Design of a Compliant Mechanism to Modify an Actuator Characteristic to Deliver a Constant Output Force,” ASME J. Mech. Des., 128(5), pp. 1101–1112. [CrossRef]
Jin, M. , and Zhang, X. , 2016, “ A New Topology Optimization Method for Planar Compliant Parallel Mechanisms,” Mech. Mach., 95, pp. 42–58. [CrossRef]
Yoon, G. H. , 2012, “ Topological Layout Design of Electro-Fluid-Thermal-Compliant Actuator,” Comput. Methods Appl. Mech. Eng., 209–212, pp. 28–44. [CrossRef]
Gonçalves, J. F. , De Leon, D. M. , and Perondi, E. A. , 2017, “ Topology Optimization of Embedded Piezoelectric Actuators Considering Control Spillover Effects,” J. Sound Vib., 388, pp. 20–41. [CrossRef]
Frecker, M. I. , Ananthasuresh, G. K. , Nishiwaki, S. , Kikuchi, N. , and Kota, S. , 1997, “ Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization,” ASME J. Mech. Des., 119(2), pp. 238–245. [CrossRef]
Lu, K.-J. , and Kota, S. , 2006, “ Topology and Dimensional Synthesis of Compliant Mechanisms Using Discrete Optimization,” ASME J. Mech. Des., 128(5), pp. 1080–1091. [CrossRef]
Petković, D. , Pavlović, N. D. , Shamshirband, S. , and Anuar, N. B. , 2013, “ Development of a New Type of Passively Adaptive Compliant Gripper,” Ind. Rob.: An Int. J., 40(6), pp. 610–623. [CrossRef]
Liu, C.-H. , Huang, G.-F. , Chiu, C.-H. , and Pai, T.-Y. , 2017, “ Topology Synthesis and Optimal Design of an Adaptive Compliant Gripper to Maximize Output Displacement,” J. Intell. Rob. Syst., epub.
Howell, L. L. , 2001, Compliant Mechanisms, Wiley, New York.
Midha, A. , and Howell, L. L. , 1994, “ A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots,” ASME J. Mech. Des., 116(1), pp. 280–290. [CrossRef]
Howell, L. L. , and Midha, A. , 1995, “ Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms,” ASME J. Mech. Des., 117(1), pp. 156–165. [CrossRef]
Midha, A. , and Howell, L. L. , 1996, “ Evaluation of Equivalent Spring Stiffness for Use in a Pseudo-Rigid-Body Model of Large Deflection Compliant Mechanisms,” ASME J. Mech. Des., 118(1), pp. 126–131. [CrossRef]
Doria, M. , and Birglen, L. , 2009, “ Design of an Underactuated Compliant Gripper for Surgery Using Nitinol,” ASME J. Med. Devices, 3(1), p. 011007. [CrossRef]
Dollar, A. M. , and Howe, R. D. , 2010, “ The Highly Adaptive SDM Hand-Design and Performance Evaluation,” Int. J. Rob. Res., 29(5), pp. 585–597. [CrossRef]
Deimel, R. , and Brock, O. , 2016, “ A Novel Type of Compliant and Underactuated Robotic Hand for Dexterous Grasping,” Int. J. Rob. Res., 35(1–3), pp. 161–185. [CrossRef]
Manti, M. , Hassan, T. , Passetti, G. , D'Elia, N. , Laschi, C. , and Cianchetti, M. , 2015, “ A Bioinspired Soft Robotic Gripper for Adaptable and Effective Grasping,” Soft Rob., 2(3), pp. 107–116. [CrossRef]
Katzschmann, R. K. , Marchese, A. D. , and Rus, D. , 2015, “ Autonomous Object Manipulation Using a Soft Planar Grasping Manipulator,” Soft Rob., 2(4), pp. 155–164. [CrossRef]
Marchese, A. D. , Katzschmann, R. K. , and Rus, D. , 2015, “ A Recipe for Soft Fluidic Elastomer Robots,” Soft Rob., 2(1), pp. 7–25. [CrossRef]
Galloway, K. C. , Becker, K. P. , Phillips, B. , Kirby, J. , Licht, S. , Tchernov, D. , Wood, R. J. , and Gruber, D. F. , 2016, “ Soft Robotic Grippers for Biological Sampling on Deep Reefs,” Soft Rob., 3(1), pp. 23–33. [CrossRef]
Chua, P. Y. , Ilschner, T. , and Caldwell, D. G. , 2003, “ Robotic Manipulation of Food Products—A Review,” Ind. Robot: An Int. J, 30(4), pp. 345–354. [CrossRef]
Pettersson, A. , Davis, S. , Gray, J. O. , Dodd, T. J. , and Ohlsson, T. , 2010, “ Design of a Magnetorheological Robot Gripper for Handling of Delicate Food Products With Varying Shapes,” J. Food Eng., 98(3), pp. 332–338. [CrossRef]
Pettersson, A. , Ohlsson, T. , Davis, S. , Gray, J. O. , and Dodd, T. J. , 2011, “ A Hygienically Designed Force Gripper for Flexible Handling of Variable and Easily Damaged Natural Food Products,” Innovative Food Sci. Emerging Technol., 12(3), pp. 344–351. [CrossRef]
Blanes, C. , Mellado, M. , Ortiz, C. , and Valera, A. , 2011, “ Technologies for Robot Grippers in Pick and Place Operations for Fresh Fruits and Vegetables,” Span. J. Agric. Res., 9(4), pp. 1130–1141. [CrossRef]
Blanes, C. , Ortiz, C. , Mellado, M. , and Beltrán, P. , 2015, “ Assessment of Eggplant Firmness With Accelerometers on a Pneumatic Robot Gripper,” Comput. Electron. Agric., 113, pp. 44–50. [CrossRef]
Russo, M. , Ceccarelli, M. , Corves, B. , Hüsing, M. , Lorenz, M. , Cafolla, D. , and Carbone, G. , 2017, “ Design and Test of a Gripper Prototype for Horticulture Products,” Rob. Comput. Integ. Manuf., 44, pp. 266–275. [CrossRef]
Lee, K.-M. , 2001, “ Design Criteria for Developing an Automated Live-Bird Transfer System,” IEEE Trans. Rob. Autom., 17(4), pp. 483–490. [CrossRef]
Lan, C.-C. , and Lee, K.-M. , 2008, “ An Analytical Contact Model for Design of Compliant Fingers,” ASME J. Mech. Des., 130(1), p. 011008. [CrossRef]
Liu, C.-H. , and Lee, K.-M. , 2012, “ Dynamic Modeling of Damping Effects in Highly Damped Compliant Fingers for Applications Involving Contacts,” ASME J. Dyn. Syst. Meas. Control, 134(1), p. 011005. [CrossRef]
Lee, K.-M. , and Liu, C.-H. , 2012, “ Explicit Dynamic Finite Element Analysis of an Automated Grasping Process Using Highly Damped Compliant Fingers,” Comput. Math. Appl., 64(5), pp. 965–977. [CrossRef]


Grahic Jump Location
Fig. 7

Gripper module: (a) prototype of the gripper module (with two compliant fingers) and (b) gripper actuator design

Grahic Jump Location
Fig. 3

Design scheme for the compliant finger: (a) design domain and (b) analysis domain and boundary conditions

Grahic Jump Location
Fig. 2

Design scheme for the compliant gripper

Grahic Jump Location
Fig. 1

Flowchart of the topology optimization procedure

Grahic Jump Location
Fig. 4

Iterative results for normalized objective function and volume fraction values

Grahic Jump Location
Fig. 5

Topology optimization results at some specific iterations (Iter = 207 figure shows the converged result)

Grahic Jump Location
Fig. 6

Three-dimensional printed compliant finger based on the optimized design from topology optimization

Grahic Jump Location
Fig. 8

Grasping object (orange) using the developed compliant gripper: (a) before rasping, (b) grasped, and (c) close mode at no object condition

Grahic Jump Location
Fig. 9

Robotic grasping system

Grahic Jump Location
Fig. 10

Grasping vulnerable objects with size and shape variations by using the proposed compliant gripper: (a) guava, (b) kiwi, (c) grapefruit, (d) apple, (e) wine glass, (f) wine glass, (g) spiral bulb, (h) glass, (i) balloon, (j) water balloon, (k) paper box, and (l) empty bottle water

Grahic Jump Location
Fig. 11

Payload test (the maximum payload is 2.2 kg)

Grahic Jump Location
Fig. 12

Input and output forces of the 3D printed compliant finger

Grahic Jump Location
Fig. 13

Mechanical advantage (MA) of the 3D printed compliant finger

Grahic Jump Location
Fig. 14

Geometric advantage (GA) of the 3D printed compliant finger



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In