Bricard,
R.
, 1897, “
Mémoire sur la thèorie de l'octaèdre articulè,” J. Pure Appl. Math.,
3, pp. 113–150.

Bricard,
R.
, 1927, Leçons de cinématique,
Gauthier-Villars,
Paris, France.

Hunt,
K. H.
, 1967, “
Screw Axes and Mobility in Spatial Mechanisms Via the Linear Complex,” J. Mech.,
2(3), pp. 307–327.

[CrossRef]
Phillips,
J.
, 1990, Freedom in Machinery (Screw Theory Exemplified, Vol.
2),
Cambridge University Press,
Cambridge, UK.

Baker,
J. E.
, 1980, “
An Analysis of the Bricard Linkages,” Mech. Mach. Theory,
15(4), pp. 267–286.

[CrossRef]
Dai,
J. S.
, and
Gogu,
G.
, 2016, “
Special Issue on Reconfigurable Mechanisms: Morphing, Metamorphosis and Reconfiguration Through Constraint Variations and Reconfigurable Joints,” Mech. Mach. Theory,
96(Pt. 2), pp. 213–214.

[CrossRef]
Kuo,
C. H.
,
Dai,
J. S.
, and
Yan,
H. S.
, 2009, “
Reconfiguration Principles and Strategies for Reconfigurable Mechanisms,” ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots (ReMAR), London, June 22–24, pp. 1–7.

Wohlhart,
K.
, 1996, “
Kinematotropic Linkages,” Recent Advances in Robot Kinematics,
J. Lenarčič
and
V. Parent-Castelli
, eds., Springer,
Dordrecht, The Netherlands, pp. 359–368.

[CrossRef]
Galletti,
C.
, and
Fanghella,
P.
, 2001, “
Single-Loop Kinematotropic Mechanisms,” Mech. Mach. Theory,
36(3), pp. 743–761.

[CrossRef]
Dai,
J. S.
, and
Jones,
J. R.
, 1999, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds,” ASME: J. Mech. Des.,
121(3), pp. 375–382.

[CrossRef]
Zhang,
K.
,
Dai,
J. S.
, and
Fang,
Y.
, 2012, “
Geometric Constraint and Mobility Variation of Two 3 SvPSv Metamorphic Parallel Mechanisms,” ASME J. Mech. Des.,
135(1), p. 011001.

[CrossRef]
Gan,
D.
,
Dai,
J. S.
,
Dias,
J.
, and
Lakmal,
S.
, 2013, “
Unified Kinematics and Singularity Analysis of a Metamorphic Parallel Mechanism With Bifurcated Motion,” ASME J. Mech. Rob.,
5(3), p. 031004.

[CrossRef]
Li, S.
, and
Dai,
J. S.
, 2012, “
Structure Synthesis of Single-Driven Metamorphic Mechanisms Based on the Augmented Assur Groups,” ASME J. Mech. Rob.,
4(3), p. 031004.

[CrossRef]
Qin,
Y.
,
Dai,
J.
, and
Gogu,
G.
, 2014, “
Multi-Furcation in a Derivative Queer-Square Mechanism,” Mech. Mach. Theory,
81(11), pp. 36–53.

[CrossRef]
Ye,
W.
,
Fang,
Y.
,
Zhang,
K.
, and
Guo,
S.
, 2014, “
A New Family of Reconfigurable Parallel Mechanisms With Diamond Kinematotropic Chain,” Mech. Mach. Theory,
74, pp. 1–9.

[CrossRef]
Kong,
X.
, 2014, “
Reconfiguration Analysis of a 3-DOF Parallel Mechanism Using Euler Parameter Quaternions and Algebraic Geometry Method,” Mech. Mach. Theory,
74, pp. 188–201.

[CrossRef]
Kong,
X.
, 2012, “Type Synthesis of Variable Degrees-of-Freedom Parallel Manipulators With Both Planar and 3T1R Operation Modes,” ASME Paper No. DETC2012-70621.

Zhang,
K.
, and
Dai,
J. S.
, 2016, “
Geometric Constraints and Motion Branch Variations for Reconfiguration of Single-Loop Linkages With Mobility One,” Mech. Mach. Theory,
106, pp. 16–29.

[CrossRef]
López-Custodio,
P. C.
,
Rico,
J. M.
, and
Cervantes-Sánchez,
J. J.
, 2017, “
Local Analysis of Helicoid-Helicoid Intersections in Reconfigurable Linkages,” ASME J. Mech. Rob.,
9(3), p. 031008.

[CrossRef]
Arponen,
T.
,
Müller,
A.
,
Piipponen,
S.
, and
Tuomela,
J.
, 2014, “
Kinematical Analysis of Overconstrained and Underconstrained Mechanisms by Means of Computational Algebraic Geometry,” Meccanica,
49(4), pp. 843–862.

[CrossRef]
Zhang,
K.
,
Müller,
A.
, and
Dai,
J. S.
, 2016, “
A Novel Reconfigurable 7R Linkage With Multifurcation,” Advances in Reconfigurable Mechanisms and Robots II,
X. Ding
,
X. Kong
, and
J. S. Dai
, eds.,
Springer International Publishing, Cham, Switzerland, pp. 3–14.

[CrossRef]
Aimedee,
F.
,
Gogu,
G.
,
Dai,
J.
,
Bouzgarrou,
C.
, and
Bouton,
N.
, 2016, “
Systematization of Morphing in Reconfigurable Mechanisms,” Mech. Mach. Theory,
96(Pt. 2), pp. 215–224.

[CrossRef]
López-Custodio,
P. C.
,
Rico,
J. M.
,
Cervantes-Sánchez,
J. J.
,
Pérez-Soto,
G. I.
, and
Díez-Martínez,
C. R.
, 2017, “
Verification of the Higher Order Kinematic Analyses Equations,” Eur. J. Mech. A,
61, pp. 198–215.

[CrossRef]
Müller,
A.
, 2016, “
Local Kinematic Analysis of Closed-Loop Linkages Mobility, Singularities, and Shakiness,” ASME J. Mech. Rob.,
8(4), p. 041013.

[CrossRef]
Müller,
A.
, 2005, “
Geometric Characterization of the Configuration Space of Rigid Body Mechanisms in Regular and Singular Points,” ASME Paper No. DETC2005-84712.

Kong,
X.
, 2017, “
Reconfiguration Analysis of Multimode Single-Loop Spatial Mechanisms Using Dual Quaternions,” ASME J. Mech. Rob.,
9(5), p. 051002.

Song,
C. Y.
,
Chen,
Y.
, and
Chen,
I.-M.
, 2013, “
A 6R Linkage Reconfigurable Between the Line-Symmetric Bricard Linkage and the Bennett Linkage,” Mech. Mach. Theory,
70, pp. 278–292.

[CrossRef]
Chen,
Y.
, and
Chai,
W. H.
, 2011, “
Bifurcation of a Special Line and Plane Symmetric Bricard Linkage,” Mech. Mach. Theory,
46(4), pp. 515–533.

[CrossRef]
Zhang,
K.
, and
Dai,
J.
, 2014, “
A Kirigami-Inspired 8R Linkage and Its Evolved Overconstrained 6R Linkages With the Rotational Symmetry of Order Two,” ASME J. Mech. Rob.,
6(2), p. 021007.

[CrossRef]
Jenkins,
E. M.
,
Crossley,
F. R. E.
, and
Hunt,
K. H.
, 1969, “
Gross Motion Attributes of Certain Spatial Mechanisms,” ASME J. Eng. Ind.,
91(1), pp. 83–90.

[CrossRef]
Torfason,
L. E.
, and
Crossley,
F. R. E.
, 1971, “
Use of the Intersection of Surfaces as a Method for Design of Spatial Mechanisms,” Third World Congress for the Theory of Machines and Mechanisms, Kupari, Yugoslavia, Sept. 13–20, Paper No. B-20.

Hunt,
K. H.
, 1973, “
Constant-Velocity Shaft Couplings: A General Theory,” ASME J. Eng. Ind.,
95(2), pp. 455–464.

[CrossRef]
Fichter,
E. F.
, and
Hunt,
K. H.
, 1975, “
The Fecund Torus, Its Bitangent-Circles and Derived Linkages,” Mech. Mach. Theory,
10(2–3), pp. 167–176.

[CrossRef]
Shrivastava,
A. K.
, and
Hunt,
K. H.
, 1973, “
Dwell Motion From Spatial Linkages,” ASME J. Eng. Ind.,
95(2), pp. 511–518.

[CrossRef]
Torfason,
L. E.
, and
Sharma,
A. K.
, 1973, “
Analysis of Spatial RRGRR Mechanisms by the Method of Generated Surfaces,” ASME J. Eng. Ind.,
95(3), pp. 704–708.

[CrossRef]
Su,
H. J.
, and
McCarthy,
J. M.
, 2005, “
Dimensioning a Constrained Parallel Robot to Reach a Set of Task Positions ,” IEEE International Conference on Robotics and Automation (ICRA), Barcelona, Spain, Apr. 18–22, pp. 4026–4030.

Liu,
Y.
, and
Zsombor-Murray,
P.
, 1995, “
Intersection Curves Between Quadric Surfaces of Revolution,” Trans. Can. Soc. Mech. Eng.,
19(4), pp. 435–453.

López-Custodio,
P. C.
,
Rico,
J. M.
,
Cervantes-Sánchez,
J. J.
, and
Pérez-Soto,
G.
, 2016, “
Reconfigurable Mechanisms From the Intersection of Surfaces,” ASME J. Mech. Rob.,
8(2), p. 021029.

[CrossRef]
Lee,
C. C.
, and
Hervé,
J. M.
, 2012, “
A Discontinuously Movable Constant Velocity Shaft Coupling of Koenigs Joint Type,” Advances in Reconfigurable Mechanisms and Robots I, M. Zoppi, J. S. Dai, and X. Kong, eds., pp. 35–43.

[CrossRef]
Phillips,
J.
, 1984, Freedom in Machinery (Introducing Screw Theory, Vol.
1),
Cambridge University Press,
Cambridge, UK.

Hunt,
K. H.
, 1978, Kinematic Geometry of Mechanisms,
Oxford University Press,
New York.

Hunt,
K. H.
, 1968, “
Note on Complexes and Mobility,” J. Mech.,
3(3), pp. 199–202.

[CrossRef]
Chen,
Y.
, and
You,
Z.
, 2009, “
Two-Fold Symmetrical 6R Foldable Frame and Its Bifurcations,” Int. J. Solids Struct.,
46(25), pp. 4504–4514.

[CrossRef]
López-Custodio,
P. C.
,
Dai,
J. S.
, and
Rico,
J. M.
, 2017, “Branch Reconfiguration of Bricard Loops Based on Toroids Intersections: Line-Symmetric Case,” (submitted).

Liu,
X.-M.
,
Liu,
C.-Y.
,
Yong,
J.-H.
, and
Paul,
J.-C.
, 2011, “
Torus/Torus Intersection,” Comput.-Aided Des. Appl.,
8(3), pp. 465–477.

[CrossRef]
Krivoshapko,
S. N.
, and
Ivanov,
V. N.
, 2015, Encyclopedia of Analytical Surfaces,
Springer, Cham,
Switzerland.

[CrossRef]
Thorpe,
J. A.
, 1979, Elementary Topics in Differential Geometry,
Springer-Verlag,
New York.

[CrossRef]Dai, J. S., and Rees Jones, J., 2001, “Interrelationship Between Screw Systems and Corresponding Reciprocal Systems and Applications,” Mech. Mach. Theory,
36(5), pp. 633–651.

Dai, J. S., and Rees Jones, J., 2002, “Null-Space Construction Using Cofactors From a Screw Algebra Context,” Proc. R. Soc. A Math., Phys. Eng. Sci.,
458(2024), pp. 1845–1866.

Whitney,
H.
, 1965, “
Tangents to an Analytic Variety,” Ann. Math.,
81(3), pp. 496–549.

[CrossRef]
Lerbet,
J.
, 1998, “
Analytic Geometry and Singularities of Mechanisms,” Z. Angew. Math. Mech.,
78(10), pp. 687–694.

[CrossRef]
Müller,
A.
, 2002, “
Local Analysis of Singular Configuration of Open and Closed Loop Manipulators,” Multibody Syst. Dyn.,
8(3), pp. 297–326.

[CrossRef]
Müller,
A.
, 2014, “
Higher Derivatives of the Kinematic Mapping and Some Applications,” Mech. Mach. Theory,
76, pp. 70–85.

[CrossRef]
Diez-Martínez,
C. R.
,
Rico,
J. M.
, and
Cervantes-Sánchez,
J. J.
, 2006, “
Mobility and Connectivity in Multiloop Linkages,” Advances in Robot Kinematics,
J. Lenarčič
and
B. Roth
, eds.,
Springer, Dordrecht,
The Netherlands, pp. 455–464.

[CrossRef]
Connelly,
R.
, and
Servatius,
H.
, 1994, “
Higher-Order Rigidity—What is the Proper Definition?,” Discrete Comput. Geom.,
11(2), pp. 193–200.

[CrossRef]Dai, J. S., and Shah, P., 2002, “Orientation Capability of Planar Serial Manipulators Using Rotatability Analysis Based on Workspace Decomposition,” Proc. Inst. Mech. Eng., Part C,
216(3), pp. 275–288.

Gupta,
K. C.
, and
Ma,
R.
, 1995, “
A Direct Rotatability Criterion for Spherical Four-Bar Linkages,” ASME J. Mech. Des.,
117(4), pp. 597–600.

[CrossRef]Shah, P., and Dai, J. S., 2002 “Orientation Capability Representation and Application to Manipulator Analysis and Synthesis,” Robotica,
20(5), pp. 529–535.

Waldron,
K. J.
, 1976, “
Elimination of the Branch Problem in Graphical Burmester Mechanism Synthesis for Four Finitely Separated Positions,” ASME J. Eng. Ind.,
98(1), pp. 176–182.

[CrossRef]
Reinholtz,
C. F.
,
Sandor,
G. N.
, and
Duffy,
J.
, 1986, “
Branching Analysis of Spherical RRRR and Spatial RCCC Mechanisms,” J. Mech. Transm. Autom. Des.,
108(4), pp. 481–486.

[CrossRef]