0
Research Papers

A Linear Multiport Network Approach for Elastically Coupled Underactuated Grippers

[+] Author and Article Information
Michael J. Martell

Department of Mechanical Engineering,
The University of Tulsa,
Tulsa, OK 74104
e-mail: michael-martell@utulsa.edu

J. C. Díaz

Tandy School of Computer Science,
The University of Tulsa,
Tulsa, OK 74104
e-mail: diaz@utulsa.edu

Joshua A. Schultz

Department of Mechanical Engineering,
The University of Tulsa,
Tulsa, OK 74104
e-mail: joshua-schultz@utulsa.edu

1Corresponding author.

Manuscript received January 9, 2017; final manuscript received July 21, 2017; published online August 23, 2017. Assoc. Editor: K. H. Low.

J. Mechanisms Robotics 9(5), 051012 (Aug 23, 2017) (10 pages) Paper No: JMR-17-1007; doi: 10.1115/1.4037566 History: Received January 09, 2017; Revised July 21, 2017

This paper presents a framework based on multiport network theory for modeling underactuated grippers where the actuators produce finger motion by deforming an elastic transmission mechanism. If the transmission is synthesized from compliant components joined together with series (equal force) or parallel (equal displacement) connections, the resulting multiport immittance (stiffness) matrix for the entire transmission can be used to deduce how the object will behave in the grasp. To illustrate this, a three-fingered gripper is presented in which each finger is driven by one of two linear two-port spring networks. The multiport approach predicts contact force distribution with good fidelity even with asymmetric objects. The parallel-connected configuration exhibited object rotation and was more prone to object ejection than the series-connected case, which balanced the contact forces evenly.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Odhner, L. U. , Jentoft, L. P. , Claffee, M. R. , Corson, N. , Tenzer, Y. , Ma, R. R. , Buehler, M. , Kohout, R. , Howe, R. D. , and Dollar, A. M. , 2014, “ A Compliant, Underactuated Hand for Robust Manipulation,” Int. J. Rob. Res., 33(5), pp. 736–752. [CrossRef]
Butterfass, J. , Grebenstein, M. , Liu, H. , and Hirzinger, G. , 2001, “ DLR-Hand II: Next Generation of a Dextrous Robot Hand,” IEEE International Conference on Robotics and Automation, (ICRA), Seoul, South Korea, May 21–26, pp. 109–114.
Malhotra, M. , and Matsuoka, Y. , 2010, “ The Relationship Between Actuator Reduction and Controllability for a Robotic Hand,” Third IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Tokyo, Japan, Sept. 26–29, pp. 331–336.
Lovchik, C. S. , and Diftler, M. A. , 1999, “ The Robonaut Hand: A Dexterous Robot Hand for Space,” IEEE International Conference on Robotics and Automation (ICRA), Detroit, MI, May 10–15, pp. 907–912.
Bridgwater, L. B. , Ihrke, C. A. , Diftler, M. A. , Abdallah, M. E. , Radford, N. A. , Rogers, J. M. , Yayathi, S. , Askey, R. S. , and Linn, D. M. , 2012, “ The Robonaut 2 Hand: Designed to Do Work With Tools,” IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MN, May 14–18, pp. 3425–3430.
Gioioso, G. , Salvietti, G. , Malvezzi, M. , and Prattichizzo, D. , 2013, “ Mapping Synergies From Human to Robotic Hands With Dissimilar Kinematics: An Approach in the Object Domain,” IEEE Trans. Rob., 29(4), pp. 825–837. [CrossRef]
Ciocarlie, M. , Hicks, F. M. , Holmberg, R. , Hawke, J. , Schlicht, M. , Gee, J. , Stanford, S. , and Bahadur, R. , 2014, “ The Velo Gripper: A Versatile Single-Actuator Design for Enveloping, Parallel and Fingertip Grasps,” Int. J. Rob. Res., 33(5), pp. 753–767. [CrossRef]
Dechev, N. , Cleghorn, W. L. , and Naumann, S. , 2001, “ Multiple Finger, Passive Adaptive Grasp Prosthetic Hand,” Mech. Mach. Theory, 36(10), pp. 1157–1173. [CrossRef]
Catalano, M. , Grioli, G. , Farnioli, E. , Serio, A. , Piazza, C. , and Bicchi, A. , 2014, “ Adaptive Synergies for the Design and Control of the Pisa/IIT SoftHand,” Int. J. Rob. Res., 33(5), pp. 768–782. [CrossRef]
Deimel, R. , and Brock, O. , 2016, “ A Novel Type of Compliant and Underactuated Robotic Hand for Dexterous Grasping,” Int. J. Rob. Res., 35(1–3), pp. 161–185. [CrossRef]
Manti, M. , Hassan, T. , Passetti, G. , d'Elia, N. , Cianchetti, M. , and Laschi, C. , 2015, “ An Under-Actuated and Adaptable Soft Robotic Gripper,” Living Machines, Barcelona, Spain, July 28–31, pp. 64–74.
Dechev, N. , Cleghorn, W. L. , and Naumann, S. , 1999, “ Multi-Segmented Finger Design of an Experimental Prosthetic Hand,” Sixth National Applied Mechanisms & Robotics Conference, Toronto, ON, Canada, pp. 1–8. https://www.researchgate.net/publication/228585644_Multi-segmented_finger_design_of_an_experimental_prosthetic_hand
Hirose, S. , and Umetani, Y. , 1978, “ The Development of a Soft Gripper for a Versatile Robot Hand,” Mech. Mach. Theory, 13(1), pp. 351–359. [CrossRef]
Laliberté, T. , Birglen, L. , and Gosselin, M. , 2003, “ Underactuation in Robotic Grasping Hands,” Mach. Intell. Rob. Control, 4(3), pp. 1–11. http://www.polymtl.ca/labrobot/pdf/MIROC2002.pdf
Birglen, L. , 2006, “ Force Analysis of Connected Differential Mechanisms: Application to Grasping,” Int. J. Rob. Res., 25(10), pp. 1033–1046. [CrossRef]
Laliberté, T. , Baril, M. , Guay, F. , and Gosselin, C. , 2010, “ Towards the Design of a Prosthetic Underactuated Hand,” Mech. Sci., 1(1), pp. 19–26. [CrossRef]
Kragten, G. A. , Baril, M. , Gosselin, C. , and Herder, J. L. , 2011, “ Stable Precision Grasps by Underactuated Grippers,” IEEE Trans. Rob., 27(6), pp. 1056–1066. [CrossRef]
Pons, J. L. , Rocon, E. , Ceres, R. , Reynaerts, D. , Saro, B. , Levin, S. , and Moorlegheim, W. V. , 2004, “ The MANUS-HAND Dextrous Robotics Upper Limb Prosthesis: Mechanical and Manipulation Aspects,” Auton. Rob., 16(2), pp. 143–163. [CrossRef]
Dalley, S. A. , Wiste, T. E. , Withrow, T. J. , and Goldfarb, M. , 2009, “ Design of a Multifunctional Anthropomorphic Prosthetic Hand With Extrinsic Actuation,” IEEE/ASME Trans. Mechatronics, 14(6), pp. 699–706. [CrossRef]
Wiste, T. E. , Dalley, S. A. , Varol, H. A. , and Goldfarb, M. , 2011, “ Design of a Multigrasp Transradial Prosthesis,” ASME J. Med. Devices, 5(3), p. 031009. [CrossRef]
Zollo, L. , Roccella, S. , Guglielmelli, E. , Carrozza, M. C. , and Dario, P. , 2007, “ Biomechatronic Design and Control of an Anthropomorphic Artificial Hand for Prosthetic and Robotic Applications,” IEEE/ASME Trans. Mechatronics, 12(4), pp. 418–429. [CrossRef]
Zatsiorsky, V. M. , Li, Z. M. , and Latash, M. L. , 1998, “ Coordinated Force Production in Multi-Finger Tasks: Finger Interaction and Neural Network Modeling,” Biol. Cybern., 79(2), pp. 139–150. [CrossRef] [PubMed]
Gao, F. , Li, S. , Li, Z.-M. , Latash, M. L. , and Zatsiorsky, V. M. , 2003, “ Matrix Analyses of Interaction Among Fingers in Static Force Production Tasks,” Biol. Cybern., 89(6), pp. 407–414. [CrossRef] [PubMed]
Kamper, D. G. , Cruz, E. G. , and Siegel, M. P. , 2003, “ Stereotypical Fingertip Trajectories During Grasp,” J. Neurophysiol., 90(6), pp. 3702–3710. [CrossRef] [PubMed]
Weiss, E. J. , and Flanders, M. , 2004, “ Muscular and Postural Synergies of the Human Hand,” J. Neurophysiol., 92(1), pp. 523–535. [CrossRef] [PubMed]
Santello, M. , Flanders, M. , and Soechting, J. F. , 1998, “ Postural Hand Synergies for Tool Use,” J. Neurosci., 18(23), pp. 10105–10115. http://www.jneurosci.org/content/18/23/10105 [PubMed]
Bicchi, A. , Gabiccini, M. , and Santello, M. , 2011, “ Modelling Natural and Artificial Hands With Synergies,” Philos. Trans. R. Soc. London, Ser. B, 366(1581), pp. 3153–3161. [CrossRef]
Sanfilippo, F. , Zhang, H. , Pettersen, K. Y. , Salvietti, G. , and Prattichizzo, D. , 2014, “ ModGrasp: An Open-Source Rapid-Prototyping Framework for Designing Low-Cost Sensorised Modular Hands,” Fifth IEEE RAS & EMBS Conference on Biomedical Robotics and Biomechatronics (BioRob), Sao Paulo, Brazil, Aug. 12–15, pp. 951–957.
Palli, G. , Melchiorri, C. , Vassura, G. , Scarcia, U. , Moriello, L. , Berselli, G. , Cavallo, A. , De Maria, G. , Natale, C. , Pirozzi, S. , May, C. , Ficuciello, F. , and Siciliano, B. , 2014, “ The DEXMART Hand: Mechatronic Design and Experimental Evaluation of Synergy-Based Control for Human-Like Grasping,” Int. J. Rob. Res., 33(5), pp. 799–824. [CrossRef]
Catalano, M. , Grioli, G. , and Serio, A. , 2012, “ Adaptive Synergies for a Humanoid Robot Hand,” 12th IEEE-RAS Conference on Humanoid Robots (Humanoids), Osaka, Japan, Nov. 29–Dec. 1, pp. 7–14.
Della Santina, C. , Grioli, G. , Catalano, M. , Brando, A. , and Bicchi, A. , 2015, “ Dexterity Augmentation on a Synergistic Hand: The Pisa/IIT SoftHand+,” IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), Seoul, South Korea, Nov. 3–5, pp. 497–503.
Brown, C. Y. , and Asada, H. H. , 2007, “ Inter-Finger Coordination and Postural Synergies in Robot Hands Via Mechanical Implementation of Principal Components Analysis,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), San Diego, CA, Oct. 29–Nov. 2, pp. 2877–2882.
Grioli, G. , and Catalano, M. , 2012, “ Adaptive Synergies: An Approach to the Design of Under-Actuated Robotic Hands,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vilamoura, Portugal, Oct. 7–12, pp. 1251–1256.
Cutkosky, M. R. , and Kao, I. , 1989, “ Computing and Controlling the Compliance of a Robotic Hand,” IEEE Trans. Rob. Autom., 5(2), pp. 151–165. [CrossRef]
Dollar, A. M. , and Howe, R. D. , 2010, “ The Highly Adaptive SDM Hand: Design and Performance Evaluation,” Int. J. Rob. Res., 29(5), pp. 585–597. [CrossRef]
Das, D. , Rake, N. J. , and Schultz, J. A. , 2016, “ Compliantly Underactuated Hands Based on Multiport Networks,” IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), Cancun, Mexico, Nov. 15–17, pp. 1010–1015.
Choma, J. , 1985, Electrical Networks: Theory & Analysis, Wiley, New York.
Schultz, J. , and Ueda, J. , 2013, “ Nested Piezoelectric Cellular Actuators for a Biologically Inspired Camera Positioning Mechanism,” IEEE Trans. Rob., 29(5), pp. 1125–1138. [CrossRef]
Schultz, J. , and Ueda, J. , 2013, “ Two-Port Network Models for Compliant Rhomboidal Strain Amplifiers,” IEEE Trans. Rob., 29(1), pp. 42–54. [CrossRef]
Ueda, J. , Secord, T. W. , and Asada, H. H. , 2010, “ Large Effective-Strain Piezoelectric Actuators Using Nested Cellular Architecture With Exponential Strain Amplification Mechanisms,” IEEE/ASME Trans. Mechatronics, 15(5), pp. 770–782. [CrossRef]
Martell, M. J. , 2015, “ Multiport Modeling of Force and Displacement in Elastic Transmissions for Underactuated Hand,” Master's thesis, The University of Tulsa, Tulsa, OK.
Khalil, H. , 2002, Nonlinear Systems, 3rd ed., Prentice Hall, Upper Saddle River, NJ.
Prattichizzo, D. , and Trinkle, J. C. , 2008, “ Grasping,” Springer Handbook of Robotics, B. Siciliano , and O. Khatib , eds., Springer-Verlag, Berlin, pp. 671–700.
Strang, G. , 1994, Linear Algebra and Its Applications, 3rd ed., CRC Press, Boca Raton, FL.
Murray, R. M. , Li, Z. , and Sastry, S. S. , 1994, A Mathematical Introduction to Robotic Manipulation, 1st ed., CRC Press, Boca Raton, FL.
Schultz, J. , Martell, M. , and O'Mahony, G. , 2014, “ Elastic Transmission Mechanisms: Multiport Models for Human-Like Compliant Grasping in Robotic Hands,” Robotics: Science and Systems Conference, Berkeley, CA, July 12. http://www.mobilemanipulation.org/rss2014/images/Abstracts/schultz14rssws.pdf
Martell, M. , and Schultz, J. , 2014, “ Multiport Modeling of Force and Displacement in Elastic Transmissions for Underactuated Hands,” IEEE International Conference on Intelligent Robots and Systems (IROS), Chicago, IL, Sept. 14–18, pp. 1074–1079.
Gabiccini, M. , Farnioli, E. , and Bicchi, A. , 2013, “ Grasp Analysis Tools for Synergistic Underactuated Robotic Hands,” Int. J. Rob. Res., 32(13), pp. 1553–1576. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Illustration of various underactuation schemes used to couple fingers to a small number of actuators: (a) tendon branch—equal displacement, (b) tendon circuit—equal force, and (c) tendons joined by a flexible web

Grahic Jump Location
Fig. 2

A compliant mechanism with a simple multiport model, like the whiffletree on the left, can be combined with other compliant mechanisms to synthesize an elastic transmission web (center). This web (or interconnected webs) can map the actions of a small number of actuators to a larger number of fingers as shown in the anthropomorphic robot hand concept on the right.

Grahic Jump Location
Fig. 3

Diagram of a general multiport network with n ports

Grahic Jump Location
Fig. 4

Diagram of the internetwork parallel connection of multiport networks 1 and 2

Grahic Jump Location
Fig. 5

Diagram of the internetwork series connection of multiport networks 1 and 2

Grahic Jump Location
Fig. 6

Photographs of the grasping device in its parallel (a) and series (b) configurations

Grahic Jump Location
Fig. 7

Force–displacement profiles and photographs showing differing behavior between the series- and parallel-configured three-fingered gripper. (a) Plot of digit forces versus actuator displacement while digits are in contact with an object in a grasping test (parallel configuration). (b) Pictures of an acrylic cutout of the U.S. state of Oklahoma in stages of a grasping test (parallel configuration). A line is drawn along the Oklahoma–Kansas border to better visualize the rotation. (c) Plot of digit forces versus actuator displacement while digits are in contact with an object in a grasping test (series configuration). (d) Pictures of an acrylic cutout of the U.S. state of Oklahoma in stages of a grasping test (series configuration). A line is drawn along the Oklahoma–Kansas border to better visualize the rotation.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In